Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

Pauline Maffre, Stefan Brandholt, Karin Nienhaus, Li Shang, Wolfgang J. Parak and G. Ulrich Nienhaus
Beilstein J. Nanotechnol. 2014, 5, 2036–2047. https://doi.org/10.3762/bjnano.5.212

Cite the Following Article

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study
Pauline Maffre, Stefan Brandholt, Karin Nienhaus, Li Shang, Wolfgang J. Parak and G. Ulrich Nienhaus
Beilstein J. Nanotechnol. 2014, 5, 2036–2047. https://doi.org/10.3762/bjnano.5.212

How to Cite

Maffre, P.; Brandholt, S.; Nienhaus, K.; Shang, L.; Parak, W. J.; Nienhaus, G. U. Beilstein J. Nanotechnol. 2014, 5, 2036–2047. doi:10.3762/bjnano.5.212

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Boselli, L.; Castagnola, V.; Armirotti, A.; Benfenati, F.; Pompa, P. P. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. Small (Weinheim an der Bergstrasse, Germany) 2023, e2306474. doi:10.1002/smll.202306474
  • Taala, N.; Bagheri‐Khoulenjani, S. Effect of initial particle size and surface charge on the formation of the plasma protein corona on chitosan‐based nanoparticles. Polymers for Advanced Technologies 2023, 34, 3792–3802. doi:10.1002/pat.6179
  • Nienhaus, K.; Nienhaus, G. U. Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small (Weinheim an der Bergstrasse, Germany) 2023, 19, e2301663. doi:10.1002/smll.202301663
  • Binjawhar, D. N.; Al-Warhi, T.; Siddiqui, G. A.; Khan, A. Probing the interaction of zinc oxide nanorods with human serum albumin: A spectroscopic approach. Journal of biotechnology 2022, 362, 36–44. doi:10.1016/j.jbiotec.2022.12.006
  • Wang, H.; Nienhaus, K.; Shang, L.; Nienhaus, G. U. Highly Luminescent Positively Charged Quantum Dots Interacting with Proteins and Cells†. Chinese Journal of Chemistry 2022, 40, 2685–2693. doi:10.1002/cjoc.202200350
  • Latreille, P.-L.; Rabanel, J.-M.; Le Goas, M.; Salimi, S.; Arlt, J.; Patten, S. A.; Ramassamy, C.; Hildgen, P.; Martinez, V. A.; Banquy, X. In Situ Characterization of the Protein Corona of Nanoparticles In Vitro and In Vivo. Advanced materials (Deerfield Beach, Fla.) 2022, 34, e2203354. doi:10.1002/adma.202203354
  • Huang, L.; Wang, S.; Yin, Z. Study in the stabilization of proteins encapsulated in PLGA delivery system: Effects of additives on protein encapsulation, release, and stability. Journal of Drug Delivery Science and Technology 2022, 73, 103436. doi:10.1016/j.jddst.2022.103436
  • Nienhaus, K.; Xue, Y.; Shang, L.; Nienhaus, G. U. Protein adsorption onto nanomaterials engineered for theranostic applications. Nanotechnology 2022, 33, 262001. doi:10.1088/1361-6528/ac5e6c
  • Martynenko, I. V.; Purcell-Milton, F.; Gun'ko, Y. K. Quantum Dots in Biological Imaging. Supramolecular Chemistry in Biomedical Imaging; The Royal Society of Chemistry, 2022; pp 278–321. doi:10.1039/9781782624028-00278
  • Schmitt, S.; Nuhn, L.; Barz, M.; Butt, H.-J.; Koynov, K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromolecular rapid communications 2022, 43, e2100892. doi:10.1002/marc.202100892
  • Latreille, P.-L.; Le Goas, M.; Salimi, S.; Robert, J.; De Crescenzo, G.; Boffito, D. C.; Martinez, V. A.; Hildgen, P.; Banquy, X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS nano 2022, 16, 1689–1707. doi:10.1021/acsnano.1c05901
  • Berger, S.; Berger, M.; Bantz, C.; Maskos, M.; Wagner, E. Performance of nanoparticles for biomedical applications: The in vitro/in vivo discrepancy. Biophysics reviews 2022, 3, 011303. doi:10.1063/5.0073494
  • Yan, H.; Cacioppo, M.; Megahed, S.; Arcudi, F.; Đorđević, L.; Zhu, D.; Schulz, F.; Prato, M.; Parak, W. J.; Feliu, N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature communications 2021, 12, 7208. doi:10.1038/s41467-021-27406-1
  • Le, T. T. H.; Phan, A. H. T.; Le, K. M.; Phan, T. D. U.; Nguyen, K. Utilizing polymer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and delivery. RSC advances 2021, 11, 34440–34448. doi:10.1039/d1ra04983f
  • Rouse, I.; Lobaskin, V. A hard-sphere model of protein corona formation on spherical and cylindrical nanoparticles. Biophysical journal 2021, 120, 4457–4471. doi:10.1016/j.bpj.2021.09.002
  • Bernhard, C.; van Zadel, M.-J.; Bunn, A.; Bonn, M.; Gonella, G. In Situ Label-Free Study of Protein Adsorption on Nanoparticles. The journal of physical chemistry. B 2021, 125, 9019–9026. doi:10.1021/acs.jpcb.1c04775
  • Gudkov, S. V.; Burmistrov, D. E.; Serov, D. A.; Rebezov, M.; Semenova, A.; Lisitsyn, A. B. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties. Antibiotics (Basel, Switzerland) 2021, 10, 884. doi:10.3390/antibiotics10070884
  • Kianfar, E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. Journal of nanobiotechnology 2021, 19, 159. doi:10.1186/s12951-021-00896-3
  • Sousa, A. A.; Schuck, P.; Hassan, S. A. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. Nanoscale advances 2021, 3, 2995–3027. doi:10.1039/d1na00086a
  • Xue, S.; Guha, P.; Yuan, Q.; Gan, W. In Situ Spectroscopic Probes for Structures and Processes at the Surface of Noble Metallic Nanoparticles. Particle & Particle Systems Characterization 2021, 38, 2000316. doi:10.1002/ppsc.202000316
Other Beilstein-Institut Open Science Activities