Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

Rahat Javaid, Shin-ichiro Kawasaki, Akira Suzuki and Toshishige M. Suzuki
Beilstein J. Org. Chem. 2013, 9, 1156–1163. https://doi.org/10.3762/bjoc.9.129

Supporting Information

The Supporting Information features the isosbestic points in the UV–vis spectra of the reaction mixture indicating that p-aminophenol is the sole product and no side reaction occurs.

Supporting Information File 1: Analytical and spectral data.
Format: PDF Size: 114.1 KB Download

Cite the Following Article

Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors
Rahat Javaid, Shin-ichiro Kawasaki, Akira Suzuki and Toshishige M. Suzuki
Beilstein J. Org. Chem. 2013, 9, 1156–1163. https://doi.org/10.3762/bjoc.9.129

How to Cite

Javaid, R.; Kawasaki, S.-i.; Suzuki, A.; Suzuki, T. M. Beilstein J. Org. Chem. 2013, 9, 1156–1163. doi:10.3762/bjoc.9.129

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lu, X.; Dai, X.; Qi, K.; Liu, C.; Li, S.; Qi, W. Paired electrosynthesis strategy for enhancing 2, 5-Furardicarboxylic acid formation rate. Applied Surface Science 2024, 648, 158833. doi:10.1016/j.apsusc.2023.158833
  • Kowalewski, E.; Śrębowata, A. Catalytic hydrogenation of nitrocyclohexane as an alternative pathway for the synthesis of value-added products. Catalysis Science & Technology 2022, 12, 5478–5487. doi:10.1039/d2cy00790h
  • Rizvi, O. S.; Ikhlaq, A.; Ashar, U. U.; Qazi, U. Y.; Akram, A.; Kalim, I.; Alazmi, A.; Ibn Shamsah, S. M.; Alawi Al-Sodani, K. A.; Javaid, R.; Qi, F. Application of poly aluminum chloride and alum as catalyst in catalytic ozonation process after coagulation for the treatment of textile wastewater. Journal of environmental management 2022, 323, 115977. doi:10.1016/j.jenvman.2022.115977
  • Qazi, U. Y.; Javaid, R.; Ikhlaq, A.; Al-Sodani, K. A. A.; Rizvi, O. S.; Alazmi, A.; Asiri, A. M.; Ibn Shamsah, S. M. Synergistically Improved Catalytic Ozonation Process Using Iron-Loaded Activated Carbons for the Removal of Arsenic in Drinking Water. Water 2022, 14, 2406. doi:10.3390/w14152406
  • Anchan, H. N.; Bhat, N. S.; Vinod, N.; Prabhakar, P. S.; Dutta, S. Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing C–C bond scission and formation. Biomass Conversion and Biorefinery 2022. doi:10.1007/s13399-022-03105-9
  • Qazi, U. Y.; Iftikhar, R.; Ikhlaq, A.; Riaz, I.; Jaleel, R.; Nusrat, R.; Javaid, R. Application of Fe-RGO for the removal of dyes by catalytic ozonation process. Environmental science and pollution research international 2022, 29, 89485–89497. doi:10.1007/s11356-022-21879-3
  • Qazi, U. Y. Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities. Energies 2022, 15, 4741. doi:10.3390/en15134741
  • Cho, J.-Y.; Kim, H.; Oh, J.-E.; Park, B. Y. Recent Advances in Homogeneous/Heterogeneous Catalytic Hydrogenation and Dehydrogenation for Potential Liquid Organic Hydrogen Carrier (LOHC) Systems. Catalysts 2021, 11, 1497. doi:10.3390/catal11121497
  • Javaid, R.; Nanba, T. Effect of preparation method and reaction parameters on catalytic activity for ammonia synthesis. International Journal of Hydrogen Energy 2021, 46, 35209–35218. doi:10.1016/j.ijhydene.2021.08.082
  • Mazhar, S.; Qazi, U. Y.; Nadeem, N.; Zahid, M.; Jalil, A.; Khan, F.; Ul-Hasan, I.; Shahid, I. Photocatalytic degradation of methylene blue using polyaniline-based silver-doped zinc sulfide (PANI-Ag/ZnS) composites. Environmental science and pollution research international 2021, 29, 1–15. doi:10.1007/s11356-021-16181-7
  • Qazi, U. Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X.-M. Bimetallic NiCo–NiCoO2 nano-heterostructures embedded on copper foam as a self-supported bifunctional electrode for water oxidation and hydrogen production in alkaline media. International Journal of Hydrogen Energy 2021, 46, 18936–18948. doi:10.1016/j.ijhydene.2021.03.046
  • Javaid, R.; Qazi, U. Y.; Ikhlaq, A.; Zahid, M.; Alazmi, A. Subcritical and supercritical water oxidation for dye decomposition. Journal of environmental management 2021, 290, 112605. doi:10.1016/j.jenvman.2021.112605
  • Shamsah, I.; Sami, M. Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions. Catalysts 2021, 11, 429. doi:10.3390/catal11040429
  • Ikhlaq, A.; Fatima, R.; Qazi, U. Y.; Javaid, R.; Akram, A.; Ibn Shamsah, S.; Qi, F. Combined Iron-Loaded Zeolites and Ozone-Based Process for the Purification of Drinking Water in a Novel Hybrid Reactor: Removal of Faecal Coliforms and Arsenic. Catalysts 2021, 11, 373. doi:10.3390/catal11030373
  • Xu, L.; Nie, R.; Xujie, C.; Yanchen, L.; Yuxi, J.; Lu, X. Formic acid enabled selectivity boosting in transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-furandimethanol on highly dispersed Co–Nx sites. Catalysis Science & Technology 2021, 11, 1451–1457. doi:10.1039/d0cy01969k
  • Romero, A. H. Reduction of Nitroarenes via Catalytic Transfer Hydrogenation Using Formic Acid as Hydrogen Source: A Comprehensive Review. ChemistrySelect 2020, 5, 13054–13075. doi:10.1002/slct.202002838
  • Xu, F.; Chen, J.; Xie, X.; Cheng, P.-F.; Yu, Z.; Su, W. Synthesis of a Crizotinib Intermediate via Highly Efficient Catalytic Hydrogenation in Continuous Flow. Organic Process Research & Development 2020, 24, 2252–2259. doi:10.1021/acs.oprd.0c00302
  • Kudaibergenov, S. E.; Dzhardimalieva, G. I. Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers 2020, 12, 572. doi:10.3390/polym12030572
  • Xu, L.; Nie, R.; Lyu, X.; Wang, J.; Lu, X. Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology 2020, 197, 106205. doi:10.1016/j.fuproc.2019.106205
  • Shultz, L. R.; McCullough, B.; Newsome, W. J.; Ali, H.; Shaw, T. E.; Davis, K. O.; Uribe-Romo, F. J.; Baudelet, M.; Jurca, T. A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules (Basel, Switzerland) 2019, 25, 89. doi:10.3390/molecules25010089
Other Beilstein-Institut Open Science Activities