The rapid generation of isothiocyanates in flow

Marcus Baumann and Ian R. Baxendale
Beilstein J. Org. Chem. 2013, 9, 1613–1619. https://doi.org/10.3762/bjoc.9.184

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 184.5 KB Download

Cite the Following Article

The rapid generation of isothiocyanates in flow
Marcus Baumann and Ian R. Baxendale
Beilstein J. Org. Chem. 2013, 9, 1613–1619. https://doi.org/10.3762/bjoc.9.184

How to Cite

Baumann, M.; Baxendale, I. R. Beilstein J. Org. Chem. 2013, 9, 1613–1619. doi:10.3762/bjoc.9.184

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Maeda, B.; Murakami, K. Recent advancement in the synthesis of isothiocyanates. Chemical communications (Cambridge, England) 2024, 60, 2839–2864. doi:10.1039/d3cc06118c
  • Leadbeater, N. E. Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 489–526. doi:10.1007/978-1-0716-1579-9_14
  • Németh, A. G.; Ábrányi-Balogh, P. Recent Advances in the Synthesis of Isothiocyanates Using Elemental Sulfur. Catalysts 2021, 11, 1081. doi:10.3390/catal11091081
  • Alfano, A. I.; Brindisi, M.; Lange, H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry 2021, 23, 2233–2292. doi:10.1039/d0gc03883k
  • Nickisch, R.; Conen, P.; Gabrielsen, S. M.; Meier, M. A. R. A more sustainable isothiocyanate synthesis by amine catalyzed sulfurization of isocyanides with elemental sulfur. RSC advances 2021, 11, 3134–3142. doi:10.1039/d0ra10436a
  • García-Lacuna, J.; Domínguez, G.; Pérez-Castells, J. Flow Chemistry for Cycloaddition Reactions. ChemSusChem 2020, 13, 5138–5163. doi:10.1002/cssc.202001372
  • Santos, M. S.; Betim, H. L. I.; Kisukuri, C. M.; Delgado, J. A. C.; Corrêa, A. G.; Paixão, M. W. Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Organic letters 2020, 22, 4266–4271. doi:10.1021/acs.orglett.0c01297
  • Moore, J. C.; Howie, R. A.; Bourne, S. L.; Jenkins, G. N.; Licence, P.; Poliakoff, M.; George, M. W. In Situ Sulfidation of Pd/C: A Straightforward Method for Chemoselective Conjugate Reduction by Continuous Hydrogenation. ACS Sustainable Chemistry & Engineering 2019, 7, 16814–16819. doi:10.1021/acssuschemeng.9b04347
  • Németh, A.; Keserű, G. M.; Ábrányi-Balogh, P. A novel three-component reaction between isocyanides, alcohols or thiols and elemental sulfur: a mild, catalyst-free approach towards O-thiocarbamates and dithiocarbamates. Beilstein journal of organic chemistry 2019, 15, 1523–1533. doi:10.3762/bjoc.15.155
  • Yong, F. F.; Hewitt, R. J.; Ong, M. J. H.; Qiu, G.; Burkett, B. A. An Alternative Fragmentation Pathway of 5H‐1,4,2‐Oxathiazoles Under Basic Conditions. ChemistrySelect 2017, 2, 7961–7964. doi:10.1002/slct.201701095
  • Baumann, M.; Baxendale, I. R. Ethyl 5-(4-Bromophenyl)-4-methyl-1H-pyrrole-2-carboxylate. Molbank 2017, 2017, M951. doi:10.3390/m951
  • Tobin, J. M.; McCabe, T. J. D.; Prentice, A. W.; Holzer, S.; Lloyd, G. O.; Paterson, M. J.; Arrighi, V.; Cormack, P. A. G.; Vilela, F. Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catalysis 2017, 7, 4602–4612. doi:10.1021/acscatal.7b00888
  • Glasnov, T. N. Continuous-Flow Chemistry in the Research Laboratory - Organic Synthesis in Dedicated Continuous Flow Systems: Further Chemistry Examples. Continuous-Flow Chemistry in the Research Laboratory; Springer International Publishing, 2016; pp 93–112. doi:10.1007/978-3-319-32196-7_10
  • Kaschula, C. H.; Hunter, R. Synthesis and Structure–Activity Relations in Allylsulfide and Isothiocyanate Compounds From Garlic and Broccoli Against In Vitro Cancer Cell Growth. Studies in Natural Products Chemistry 2016, 50, 1–43. doi:10.1016/b978-0-444-63749-9.00001-3
  • Hewitt, R. J.; Ong, M. J. H.; Lim, Y. W.; Burkett, B. A. Investigations of the Thermal Responsiveness of 1,4,2-Oxathiazoles. European Journal of Organic Chemistry 2015, 2015, 6687–6700. doi:10.1002/ejoc.201500909
  • Lim, Y. W.; Hewitt, R. J.; Burkett, B. A. The Dual Reactivity of 5‐S/5‐O‐Phenyl‐1,4,2‐oxathiazoles: A Fragmentation Pathway That Affords Nitriles in the Presence of Water. European Journal of Organic Chemistry 2015, 2015, 4840–4842. doi:10.1002/ejoc.201500637
  • Roda, N. M.; Tran, D. N.; Battilocchio, C.; Labes, R.; Ingham, R. J.; Hawkins, J. M.; Ley, S. V. Cyclopropanation using flow-generated diazo compounds. Organic & biomolecular chemistry 2015, 13, 2550–2554. doi:10.1039/c5ob00019j
  • Tu, N. P.; Sarris, K.; Djuric, S. W. Tandem Click-Suzuki reactions in a novel flow reactor incorporating immobilized and exchangeable reagents. RSC Advances 2015, 5, 4754–4757. doi:10.1039/c4ra13931c
  • Tran, D. N.; Battilocchio, C.; Lou, S.-B.; Hawkins, J. M.; Ley, S. V. Flow chemistry as a discovery tool to access sp2–sp3 cross-coupling reactions via diazo compounds. Chemical science 2014, 6, 1120–1125. doi:10.1039/c4sc03072a
  • Ouchi, T.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Process Intensification for the Continuous Flow Hydrogenation of Ethyl Nicotinate. Organic Process Research & Development 2014, 18, 1560–1566. doi:10.1021/op500208j
Other Beilstein-Institut Open Science Activities