Search results

Search for "phosphonium" in Full Text gives 93 result(s) in Beilstein Journal of Organic Chemistry.

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • University of Technology, Stremayrgasse 9, 8010 Graz, Austria 10.3762/bjoc.20.6 Abstract The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium
  • phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate
  • molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV–vis absorptions peaking around 360 nm
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Construction of diazepine-containing spiroindolines via annulation reaction of α-halogenated N-acylhydrazones and isatin-derived MBH carbonates

  • Xing Liu,
  • Wenjing Shi,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2023, 19, 1923–1932, doi:10.3762/bjoc.19.143

Graphical Abstract
  • efficient synthesis of spiro[azepine-4,3'-indoline] derivatives via the [4 + 3] cycloaddition reaction of bromo-substituted isatin-derived MBH adducts and N-(o-chloromethyl)arylamides. In this efficient protocol, the reactive allylic phosphonium ylides and aza-o-quinone methides were generated in situ and
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • showcased broad applicability, operational simplicity, and utilized easily obtainable and air-stable phosphonium salts 54 as convenient photoinduced Rf radical reagents. Conclusion In recent years, the field of synthetic chemistry has experienced significant advancements in iodide/phosphine-based photoredox
  • . PPh3-catalyzed alkylative iododecarboxylation with LiI. Visible-light-triggered iodination facilitated by N-heterocyclic carbenes. Visible-light-induced photolysis of phosphonium iodide salts for monofluoromethylation. Funding This work was financially supported by the Central University Basic
PDF
Album
Review
Published 22 Nov 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • formation of compound 92, which was reduced to the corresponding alcohol and then converted into the bromide 94. Ozonolysis followed by reaction with triphenylphosphine gave the corresponding phosphonium salt 96, which was subjected to different conditions for the intramolecular Wittig reaction. The best
PDF
Album
Review
Published 29 Mar 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • , does not undergo acylation during the catalysis. Finally, we compared our catalytic system with commercially available imidazolium and phosphonium-based ILs (Table 4). The imidazolium-based IL [EMIm]NTf2 converts anisole with a yield of 77% (see Table 4, entry 1), whereas [BMIm]NTf2 shows a similar
  • performance as TAAIL 6. Using IL 1,3-dibutyl-2-methylimidazolium NTf2 (Table, entry 3), carrying no hydrogen atom at the C2 position of the imidazolium ring, 86% of product were obtained. The phosphonium-based IL [P66614]NTf2 again shows an inferior performance compared to TAAIL 6. Upon changing the anion of
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

Organophosphorus chemistry: from model to application

  • György Keglevich

Beilstein J. Org. Chem. 2023, 19, 89–90, doi:10.3762/bjoc.19.8

Graphical Abstract
  • derivatives. In another study, the synthesis of bis(chlorophenyl)acetylenes that were useful for the preparation of 1,2,3-tris(chlorophenyl)cyclopropenylium bromides was accomplished [3]. The latter species were converted to tributyl(1,2,3-tris(chlorophenyl)cyclopropenyl)phosphonium bromides, affording 3,4,5
PDF
Editorial
Published 25 Jan 2023

Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods

  • William H. Hersh and
  • Tsz-Yeung Chan

Beilstein J. Org. Chem. 2023, 19, 36–56, doi:10.3762/bjoc.19.4

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2023

Synthesis and electrochemical properties of 3,4,5-tris(chlorophenyl)-1,2-diphosphaferrocenes

  • Almaz A. Zagidullin,
  • Farida F. Akhmatkhanova,
  • Mikhail N. Khrizanforov,
  • Robert R. Fayzullin,
  • Tatiana P. Gerasimova,
  • Ilya A. Bezkishko and
  • Vasili A. Miluykov

Beilstein J. Org. Chem. 2022, 18, 1338–1345, doi:10.3762/bjoc.18.139

Graphical Abstract
  • Federation 10.3762/bjoc.18.139 Abstract A novel representative of sodium 3,4,5-triaryl-1,2-diphosphacyclopentadienide containing a chloro substituent in the meta-position of the aryl groups was obtained with a high yield based on the reaction of tributyl(1,2,3-triarylcyclopropenyl)phosphonium bromide and
  • ; electrochemical properties; phosphacyclopentadienide anion; phosphaferrocene; phosphonium salt; phosphorus heterocycle; Introduction Among the various heterometallocenes reported to date, phosphaferrocenes are by far the most investigated because of their structural and electronic features [1][2] and remain the
  • tributyl(1,2,3-triarylcyclopropenyl)phosphonium bromides 6 containing a Cl substituent in the meta- or para-position of each aryl group. This was done by reaction of appropriate 1,2,3-triarylcyclopropenylium bromides 5 with PBu3 at 25 °C in THF in 34 and 39% yield (Scheme 2). The structures of 6 were
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • phosphonium selenide catalysts which showed catalytic activity in assembly reactions [41], Michael addition reactions [41], Rauhut–Currier reactions [42], cyanosilylation reactions [43], and cycloaddition of vinylindoles through chalcogen–π bonding catalysis [44]. Our previous works demonstrated that Se···O
  • bonding interactions between phosphonium selenides and carbonyls can significantly activate carbonyl groups [41][42][43], thus providing a new opportunity to develop carbonyl chemistry. To expand the catalysis capability of chalcogen bonding interactions, we envisioned that consecutive condensations
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • liberated using TBAF to give compound 27 in 97% yield over two steps. The alcohol group in 27 was then oxidized to the corresponding aldehyde under Swern conditions and subsequently subjected to a Wittig reaction with a two-carbon phosphonium ylide reagent. The desired α,β-unsaturated ester 28 was then
PDF
Album
Review
Published 14 Sep 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • recently, the strategy via introducing secondary interactions for the design of the bifunctional catalysts achieved wide application in asymmetric reactions [74]. Wu et al. described a Mannich asymmetric addition of cyanocoumarins 39 to isatin imines 112 catalyzed by an amide-phosphonium salt 114. This
  • %) providing excellent results, besides the use of only 0.1 mol % of amide-phosphonium salt for the synthesis of coumarin derivatives. Some methodologies have also proven to be highly efficient in one-pot and gram-scale procedures, which turns to be more environmentally benign. Nevertheless, studies are still
  • of 2-hydroxycinnamaldehydes 109 with 4-hydroxycoumarins 1. Mannich asymmetric addition of cyanocoumarins 39 to isatin imines 112 catalyzed by the amide-phosphonium salt 114. Enantioselective total synthesis of (+)-scuteflorin A (119). Funding The authors gratefully acknowledge FAPESP (grants 2013
PDF
Album
Review
Published 03 Aug 2021

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

  • Susanne M. Fischer,
  • Simon Renner,
  • A. Daniel Boese and
  • Christian Slugovc

Beilstein J. Org. Chem. 2021, 17, 1689–1697, doi:10.3762/bjoc.17.117

Graphical Abstract
  • to an activated electrophile, e.g., an electron-deficient olefin, generating a zwitterion (i, Scheme 1). In further course, the zwitterion acts as a nucleophile or as a base [1]. The efficiency of the formation of this β-phosphonium α-carbanionic species depends on the nucleophilicity of the
  • formed by the conjugate addition of the phosphine to the Michael acceptor, is believed to be protonated by the alcohol forming the actual catalytically active species namely ion pair ii, consisting of a phosphonium cation and an alkoxide. The alkoxide in ii then reacts with another electrophile
  • generating the ion pair iii. In the final step, the α-carbanionic species in iii gets protonated by an alcohol generating the oxa-Michael addition product (iv) and regenerating ii (Scheme 1). Additionally, the ion par ii might directly react via a nucleophilic substitution of the phosphonium group by the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2021

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

  • Nikita Brodyagin,
  • Martins Katkevics,
  • Venubabu Kotikam,
  • Christopher A. Ryan and
  • Eriks Rozners

Beilstein J. Org. Chem. 2021, 17, 1641–1688, doi:10.3762/bjoc.17.116

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • esters 109 and hydroxy esters 110 by using (1H-benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) or (1H-benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP) as activating agents as well (Scheme 18) [33]. The synthetic method was further investigated and
  • , DCC/DMAP, DCC/1-hydroxybenzotriazole (HOBt), bromotris(dimethylamino)phosphonium hexafluorophosphate (BroP), or O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) and by 31P NMR analysis. The results indicated that the intermediates, benzotriazolyl phosphonates, were more
PDF
Album
Review
Published 16 Feb 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • reduction of dibromodifluoromethane was also used for the approach of Burton and Naae (Scheme 4), which is again suitable for electron-rich alkenes [19]. Dibromodifluoromethane reacted with triphenylphosphine to give a phosphonium salt, which then decomposed to difluorocarbene. The yields from this method
PDF
Album
Review
Published 26 Jan 2021

Facile synthesis of 7-alkyl-1,2,3,4-tetrahydro-1,8-naphthyridines as arginine mimetics using a Horner–Wadsworth–Emmons-based approach

  • Rhys A. Lippa,
  • John A. Murphy and
  • Tim N. Barrett

Beilstein J. Org. Chem. 2020, 16, 1617–1626, doi:10.3762/bjoc.16.134

Graphical Abstract
  • , GlaxoSmithKline disclosed a route to a fluoropyrrolidine 6 using a Wittig reaction between phosphonium salt 4 and aldehyde 5 [2]. The synthesis of phosphonium salt 4 (itself requiring 6 steps including partial saturation of a 1,8-naphthyridine moiety) and the formation of the triphenylphosphine oxide byproduct in
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • powerful synthetic tools. Keywords: halomethylcoumarin; Morita–Baylis–Hillman adducts; organocatalyst; phosphonium salt; triazolation; Introduction The presence of versatile functional groups in close proximity classifies Morita–Baylis–Hillman adducts as privileged key scaffolds for synthetic organic
  • developing a one-pot synthetic strategy will be worthwhile for pharmacologically important triazoles, such as isavuconazole, tazobactam, and ravuconazole [35]. Results and Discussion Initially, phosphonium salts were barely utilised or exploited in synthetic transformations. Later, in 2014, several organic
  • transformations employed quaternary phosphonium salts as favourable catalysts [36]. Their synthetic utility was not only confined to catalysis, but they were also used as intermediates for the synthesis of 1H-indazoles [37], as promoters for stereoselective rearrangements [38], and as temporary protectors of O,P
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
  • ). Phosphonium ylides, Ph3P+-C−=C=NR (391) reacted with isothiocyanate in a [2 + 2] cycloaddition to form the four-membered ring phosphonium ylides 392, which further reacted with aromatic aldehydes to afford the corresponding arylidene-2,4-diiminothietanes 393 [103] (Scheme 82). Thietan-2-ylideneacetates 397
PDF
Album
Review
Published 22 Jun 2020

Synthesis of new asparagine-based glycopeptides for future scanning tunneling microscopy investigations

  • Laura Sršan and
  • Thomas Ziegler

Beilstein J. Org. Chem. 2020, 16, 888–894, doi:10.3762/bjoc.16.80

Graphical Abstract
  • coupling reagents, such as benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) or diisopropyl carbodiimide (DIC) and additives, such as 1-hydroxybenzotriazole (HOBt) or triethylphosphine. [29][30][31] However, in our hands, none of the described methods reached the high yields that
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2020

Copper-catalyzed O-alkenylation of phosphonates

  • Nuria Vázquez-Galiñanes,
  • Mariña Andón-Rodríguez,
  • Patricia Gómez-Roibás and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2020, 16, 611–615, doi:10.3762/bjoc.16.56

Graphical Abstract
  • copper catalyst on an alkenyl(aryl)iodonium salt [33][34] would generate an alkenyl–copper(III) species which might undergo nucleophilic attack of the Lewis-basic oxygen of a dialkyl phosphonate. The resulting phosphonium-like intermediate would evolve by Arbuzov-type substitution of one of the alkyl
PDF
Album
Supp Info
Letter
Published 03 Apr 2020

Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides

  • Sabrina Müller,
  • Jannik Paulus,
  • Jochen Mattay,
  • Heiko Ihmels,
  • Veronica I. Dodero and
  • Norbert Sewald

Beilstein J. Org. Chem. 2020, 16, 60–70, doi:10.3762/bjoc.16.8

Graphical Abstract
  • excess of HBTU and could not be completely prevented [44][45]. Since this side reaction did not occur with phosphonium salts, P1 and P3 were successfully obtained by using PyBOP as an activating reagent [45][46]. After final Fmoc cleavage, the polyamides were released from the resin with a solution of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2020

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • compounds CH2XY in a 1:1:1 molar ratio to furnish 1-phosphonium-5-oxabetaines, Ph3P+–C(R)=CH–C(O–)=CXY. These betaines are formed preferentially, but not exclusively, as E-diastereoisomers with respect to the vinylic double bond. In some cases, separation of the two diastereoisomers was achieved by
  • -Michael reaction; propiolamides; Introduction Beside the well-known phosphonium ylides (Wittig ylides, methylenephosphoranes), various other types of zwitterions containing a tetravalent phosphonium moiety (phosphonium betaines) exist. They are often considered as reaction intermediates, but reports on
  • -catalyzed reactions of acetylenic ketones and esters with pinacolborane have been discussed [7][8]. The Michael addition of PPh3 at acetylenic carbonyl compounds generates phosphonium/vinyl anion intermediates which have been trapped with CH-, NH-, OH- and SH-acids [5]. In this manner, the 1:1:1 reaction of
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

A new approach to silicon rhodamines by Suzuki–Miyaura coupling – scope and limitations

  • Thines Kanagasundaram,
  • Antje Timmermann,
  • Carsten S. Kramer and
  • Klaus Kopka

Beilstein J. Org. Chem. 2019, 15, 2569–2576, doi:10.3762/bjoc.15.250

Graphical Abstract
  • explored the substrate scope of the Suzuki–Miyaura coupling by screening commercially available boronic acids (Scheme 4, Table 2). Hereby, PdCl2(dppf) was also tested in order to suppress the formation of the inseparable phosphonium cation species. At first, we investigated the use of 3-boronobenzoic acid
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Synthesis of a dihalogenated pyridinyl silicon rhodamine for mitochondrial imaging by a halogen dance rearrangement

  • Jessica Matthias,
  • Thines Kanagasundaram,
  • Klaus Kopka and
  • Carsten S. Kramer

Beilstein J. Org. Chem. 2019, 15, 2333–2343, doi:10.3762/bjoc.15.226

Graphical Abstract
  • . Lipophilic cations such as the phosphonium cation or rhodamines are known to accumulate selectively within the mitochondria, driven by the mitochondrial plasma membrane potential [39][40]. Thereby, the high lipophilicity facilitates the diffusion through the lipid bilayers of the cell and mitochondrial
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2019
Other Beilstein-Institut Open Science Activities