Search results

Search for "EELS" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • Lorentz microscopy and electron holography, along with simultaneous structural and chemical characterization techniques such as electron diffraction, 4D STEM, and energy-dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS), enable a correlative characterization to investigate magnetic
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • behavior by means of Kelvin probe force microscopy is a way to work out diffusion coefficients of respective constituents in a composite material. The next step concerning the AFM-based analysis of composite materials is the combination of local chemical analysis methods (e.g., EDX or EELS) with local
PDF
Album
Full Research Paper
Published 15 Dec 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • , of one hundred particles were calculated using ImageJ software. Energy-dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) were conducted using Thermo Scientific’s SuperX G2 and Gatans’ Enfinium ER, respectively. Thermogravimetric analysis (TGA) (PerkinElmer TGA7) was
  • (Supporting Information File 1, Table S1) and the size is consistent with nanoceria calcined at temperatures above 600 °C [15][16][17]. The relative intensities of the M5 and M4 peaks are directly related to the Ce3+ and Ce4+ concentrations, respectively [47][48]. EELS showed that the NM-212 particle edge and
  • showed the calcined nanoceria was crystalline with a primary particle diameter of 41 ± 11 nm (mean ± S.D.) and had formed large aggregates (Figure 5). EELS showed a predominance of Ce4+ (Figure 6). HAADF-EDS confirmed the presence of cerium and oxygen and showed some nitrogen and sodium but no carbon
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • microscope with a 0.19 nm point-to-point resolution at 200 keV equipped with an embedded Quantum Gatan Image Filter (Quantum GIF) for electron energy loss spectroscopy (EELS) analysis. The images were analyzed via Gatan Digital Micrograph software. Optical characterization was carried out using an Ocean
  • nanowires. The level of doping for Y(OH)3:7.5% Eu3+ phosphors produced at 5 min was captured through an annular dark field (ADF) STEM micrograph and the STEM-EELS analysis of the indicated area is presented in Figure 3. Elemental composition maps of Y (red) and Eu (green) along with their composites are
  • ≈10 nm thick nanowires. Annular dark field (ADF) STEM micrograph of an agglomerate of nanoparticles synthesized at 5 min with 7.5% doping ratio. STEM-EELS elemental composition maps of the area indicated with a white rectangle: Y (in red) and Eu (in green) maps along with their composite image. (a
PDF
Album
Full Research Paper
Published 07 Jun 2019

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • -resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of
  • , high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses strongly supports the role of ferrocene in the observed electrocatalytic effect for NADH oxidation and rule out the hypothetic role of metallic and carbonaceous impurities. Moreover
  • electrochemical signal. HRSTEM and EELS analyses confirm the presence of ferrocene derivatives on the surface of the bundles. Figure 9 shows a HAADF micrograph of the HIPCO-HNO3-FcETG2 sample. In HAADF the intensity of the signal is linked to the average “Z” value of the atoms. On the image presented in Figure 9
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • intensity on the map [31]. The same principle is used with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) [32][33][34]. This technique based on inelastic scattering measures the energy losses of the electrons. At the hot spots, the plasmon excitation results in
  • a decrease in the energy of the incident electron that can be imaged by EELS. However, these electronic techniques require conductive samples. Also, the surface preparation is challenging, as the sample has to be thinned for the measurements. An alternative approach consists in using aSNOM with lock
PDF
Album
Full Research Paper
Published 23 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • space and time [38], and hence, an electron beam can induce a time-varying polarization in an adjacent material leading to optical excitation. Optical resonances can be probed by studying either the loss in the energy of the electrons (through electron energy loss spectroscopy, EELS) [38][39] or the
  • radiation emitted in the visible part of the electromagnetic spectrum through cathodoluminescence (CL) [38]. The relationship between the information obtained using EELS and CL has been studied theoretically [40]. CL is an established technique which is widely used in various fields to characterize a range
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • [65]. More accurate compositional quantification could probably be achieved by performing atom probe tomography or thickness-corrected STEM electron energy loss spectroscopy (EELS). Planar Au nanostructures The main goal here was to elucidate the effects of each experimental parameter on the
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • analyze the chemical composition of the cobalt nanospheres by electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) mode and their local magnetic properties by electron holography in a transmission electron microscope (TEM), the specimens were prepared for TEM
  • grown at the apex of the cantilever, following the same procedure as described above. Figure 3b,c displays the SEM micrographs of the two cobalt nanospheres studied by STEM-EELS and electron holography, once grown at the apex of cantilevers already attached to the TEM grid. The morphological and
  • compositional properties of the cobalt nanospheres grown by FEBID have been confirmed by local chemical mapping of selected nanospheres of diameters 110 nm (see Figure 4b) and 90 nm (see Supporting Information File 1) performed by STEM-EELS. These quantitative maps reveal, first of all, that the deposits are
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces

  • Florian Rückerl,
  • Daniel Waas,
  • Bernd Büchner,
  • Martin Knupfer,
  • Dietrich R. T. Zahn,
  • Francisc Haidu,
  • Torsten Hahn and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 1601–1615, doi:10.3762/bjnano.8.160

Graphical Abstract
  • photoemission spectroscopy (IPES), electron energy-loss spectroscopy (EELS), spectroscopic ellipsometry and X-ray absorption spectroscopy (XAS). Here, we only briefly mention the kind of information that is provided by these methods, and we refer the reader to comprehensive literature for detailed information
  • ions. In IPES [19][40][41][42], the unoccupied density of states is probed. EELS [43][44][45] can also be called inelastic electron scattering and measures the electronic excitations either in the valence-band region, or from core levels into unoccupied states, whereas momentum-dependent studies are
  • possible [43][45][46]. The EELS cross section is proportional to Im(−1/ε) (ε is the dielectric function). In this way, one can investigate valence-band excitations (cf. optical methods) and the element-projected unoccupied density of states. Also, access to orbital selective occupations and the magnetic
PDF
Album
Review
Published 04 Aug 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • with a large solid-angle CENTURIO EDX detector and Quantum EELS spectrometer. TEM samples were obtained by drop-casting QD/hexane sols on Cu holey and formvar carbon grids. Size distributions were obtained from TEM images. XRD measurements were performed with the use of a Rigaku D/MAX 2500 (Cu Kα
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

Structural properties and thermal stability of cobalt- and chromium-doped α-MnO2 nanorods

  • Romana Cerc Korošec,
  • Polona Umek,
  • Alexandre Gloter,
  • Jana Padežnik Gomilšek and
  • Peter Bukovec

Beilstein J. Nanotechnol. 2017, 8, 1032–1042, doi:10.3762/bjnano.8.104

Graphical Abstract
  • ). The sulfur detected in the samples is originating from the sulfuric acid that was a part of the reaction mixture [26]. The chemical composition of an individual nanorod (Co-90) was determined using electron energy loss spectroscopy (EELS) in combination with high-angle annular dark field scanning
  • using a C3/C5 Nion USTEM spherical aberration-corrected microscope working at 100 keV. Electron energy loss spectra (EELS) were recorded with a modified GATAN EELS system with a back-illuminated charge coupled device camera. Thermogravimetric measurements were performed on a Mettler Toledo TGA/DSC1
  • cobalt-doped MnO2 nanorod synthesized at 90 °C (a) and chemical profile obtained from EELS analysis of the K K, Co L, Mn L and O K edges (b) along the arrow shown in panel a. Dynamic TG curves in an inert atmosphere of undoped, chromium- and cobalt-doped samples synthesized at 90, 130 and 170 °C
PDF
Album
Full Research Paper
Published 10 May 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • roughly 45° relative to the FEI GIS. Figure 1 is a schematic illustrating the geometry of the gas and laser delivery systems relative to the substrate and electron beam impact point. STEM imaging and EELS analysis Scanning transmission electron microscope (STEM) imaging and electron energy loss
  • spectroscopy (EELS) were performed using a Nion UltraSTEM 100 which is equipped with aberration correction of the probe forming lens. Beam-induced damage and contamination were minimized by using an accelerating voltage of 60 kV and a 40 pA beam current. High angle annular dark field (HAADF) and bright field
  • (BF) STEM imaging was used to analyze the structure of the nanoscale deposits before and after laser annealing. EELS was performed in order to determine the structure of carbon through analysis of the carbon K-edge. Electrical device fabrication and measurements A two-contact electrical test structure
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • overall appearance of the cell – the more advanced the necrotic cellular breakdown the more distinct the dark material inside the mitochondria. These agglomerates might be due to deposition of Ca2+ salts within the mitochondria. EELS and EDX measurements revealed a significantly raised content of calcium
  • to the TEM brightfield image. Membrane segmentation was done in a similar way, using principal components analysis of spectrum image series [50] prior to segmentation. EELS/EDX For spatially resolved elemental analysis we applied EDX spectroscopy and electron energy loss spectroscopy (EELS). For EDX
  • measurements the TEM was operated in scanning mode (STEM) using a high angular, annular dark field detector (HAADF). Areas of interest were than exclusively excited by the electron beam while measuring the EDX spectrum yielding the chemical composition of the respective area. EELS measurements were done in
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • explanation to this selective anchoring is provided below and also in the EELS section. In Figure 1c, a HAADF-HRSTEM image exhibits small agglomerates of these nanoparticles on the MWCNT, where the diameter of the MWCNT has reduced due to buckling. The nanoparticles remain crystalline as displayed by the
  • facilitate the decoration of these nanoparticles to the MWCNT. This mechanism of anchoring to the sidewalls is further probed in the EELS section. On the other hand, the side walls of the MWCNT do not appear to be atomically flat, and the outermost walls are not distinct, indicating damage to the walls of
  • evacuate the charges accumulated on the surface but also reduces the heating effects of the material due to nonradiative recombination. Core loss EELS C K-edge Most nanoparticles are attached to sites with defects and changes in CNT curvature, creating π-orbital mismatches that increase the reactivity and
PDF
Album
Full Research Paper
Published 26 Jul 2016

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • , different from optical microscopes, accelerated electrons carry high energy and interact with the material in a highly dynamic manner. Elastically scattered electrons, inelastically scattered electrons (for electron energy loss spectroscopy, i.e., EELS) and X-rays (for energy dispersive X-ray spectroscopy
  • electrons or X-rays emitted during electron–matter interaction. By combining analytical techniques including EELS and EDX, modern electron microscopy reaches its ultimate potential in both higher spatial resolution and higher energy resolution. Compared to EDX which is typically used to detect heavy
  • elements, EELS is more frequently used for light elements and therefore carbon-based nanostructures. Generally speaking, the inelastic scattering of the incident electrons, either with the tightly bound inner shell electrons or with more loosely bound valence electrons, can cause atomic electrons to be
PDF
Album
Review
Published 16 Jul 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • ) images were taken at 200 keV. Selected area diffraction (SAD) was taken using the second smallest selected area aperture corresponding to an area of 400 nm in diameter on the sample. Chemical mapping was obtained using electron energy loss spectroscopy (EELS) operated in the scanning TEM (STEM) mode. The
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • microstructure were determined by bright field (BF) TEM and high resolution TEM (HRTEM) imaging, and chemical composition of the sections was determined by combining high angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) mode
  • . The beam current in the STEM-EELS experiments was 250 pA. Focused beam induced annealing effects were not observed in the experiments. These are easily observable because the images change with time, which was not the case in the experiments presented here. Low-magnification BF-TEM images of the cross
  • magnetocrystalline anisotropy effects and, as a consequence, shape anisotropy will determine the magnetic anisotropy of the wires. The Fe content determined by EELS inside the wires is around 85%, in good agreement with the EDS performed inside the FIB-SEM equipment. According to previous studies, the saturation
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • EELS-TEM [45][61] and surface enhanced infrared spectroscopy measurements. CVs using an electrolyte containing 50 mM KAu(CN)2 (blue line), an electrolyte containing 50 mM KAg(CN)2 (red line) and a solution containing only 0.25 M Na2CO3 (black line) using as working electrode (a) a gold wire and (b) a
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation

  • Natalia E. Mordvinova,
  • Alexander A. Vinokurov,
  • Oleg I. Lebedev,
  • Tatiana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2015, 6, 1237–1246, doi:10.3762/bjnano.6.127

Graphical Abstract
  • with a large solid-angle CENTURIO EDX detector and Quantum EELS spectrometer. XRF spectroscopy was performed with a Bruker M1 Mistral spectrometer, the beam energy was 50 keV. The measurements were performed with Mo filter to diminish the background signal. First, a series of standard samples were
PDF
Album
Full Research Paper
Published 01 Jun 2015

Applications of three-dimensional carbon nanotube networks

  • Manuela Scarselli,
  • Paola Castrucci,
  • Francesco De Nicola,
  • Ilaria Cacciotti,
  • Francesca Nanni,
  • Emanuela Gatto,
  • Mariano Venanzi and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 792–798, doi:10.3762/bjnano.6.82

Graphical Abstract
  • with energy dispersion spectroscopy (EDX). Electron energy loss analysis: Electron energy loss (EELS) was recorded in reflection mode ex situ in an ultrahigh vacuum system (base pressure about 2 × 10−10 Torr) equipped with an electron gun (Ep = 300 eV, ΔE = 1.0 eV). Contact angle measurements: Static
PDF
Album
Full Research Paper
Published 23 Mar 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • spectroscopy (EELS) analysis were carried out on samples of different Tm concentrations (2 and 5.8 atom %) which underwent different annealing conditions in order to evaluate the Tm distribution in the nanoparticle. As EELS provides information relating the material with the resulting electron inelastic
  • crystalline phases. Moreover, the sensitivity to atomic composition allows for differentiation of the location of the particle where Tm is located. For this analysis, EELS data were collected in scans by crossing different particles and EELS maps of Ti and Tm were acquired and compared in order to identify
  • the relative proportion and location of Tm in the nanoparticle. TEM and EELS data were obtained using a beam of an electron microscope (JEOL-2010F) with a nominal probe size of 1 nm. Finally, the photocatalytic activity of the pure and Tm-doped TiO2 nanoparticles was analyzed. A study of the
PDF
Album
Full Research Paper
Published 02 Mar 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • spectromicroscopy having the capability of offering both spatial and chemical/physical information opens avenues for detailed characterization of nanostructures. Other spatially resolved techniques or spectromicroscopy as, e.g., electron energy loss spectroscopy (EELS) [14] have been chosen to study individual
  • affordable [21]. In the past, spectroscopic methods with high spatial resolution in the nanometer range were restricted to EELS microscopy [22][23] or scanning transmissions X-ray microscopes (STXM) [3][24]. These methods are well adapted to study the electronic structure of isolated nanostructures as their
PDF
Album
Review
Published 27 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • microscope [35]. Energy dispersive X-ray (EDX) analysis and electron energy loss spectroscopy (EELS) allow one to identify the elemental composition of a sample [167][168]. An elemental analysis may be of prime interest to distinguish NP in the tissue from artifacts that may be produced by staining
  • procedures [35]. EDX analysis and EELS can be combined with TEM as well as scanning electron microscopy (SEM) and have been used for the detection of, for example, titanium dioxide NP, QD, and silver NP [167][169][170][171][172]. In addition, a combination of EDX analysis with a scanning method (STEM or SEM
  • secondary electrons [174]. SEM can be combined with a transmission electron detector for STEM or analytical methods, for example, EDX or EELS as described for TEM. For example, SEM with EDX analysis has been used to study the fate of silver NP and ions in an in vitro human gastrointestinal digestion model
PDF
Album
Review
Published 23 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • in their properties or in the distribution of dopants poses additional challenges for characterization. Furthermore, although local methods such as scanning tunneling microscopy (STM) [24][25] and transmission electron microscopy based electron energy loss spectroscopy (TEM/EELS) [23][26] can these
  • double-walled carbon nanotubes, and for N-MWCNTs and N-graphene restrict ourselves to summarize studies in which synchrotron radiation or an additional complementary technique (such as STM, EELS or X-ray absorption spectroscopy) was used for probing the doping. Table 2 contains our survey, with both the
  • configuration in graphene were reported by STM [32] and TEM/EELS [30]. The synthesis of boron-doped SWCNTs has mainly been successful through the use of high-temperature techniques, i.e., arc-discharge [23][179] and laser ablation [180]. Identification of dopants was initially mainly via TEM/EELS measurements
PDF
Album
Review
Published 15 Jan 2015
Other Beilstein-Institut Open Science Activities