Search results

Search for "creep" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • diffusional creep processes. The rotation occurs because of a change in the content of GB dislocations, which can change the GB angle between the grains (Frank–Bilby equation). We cannot completely exclude that GB rotation occurs to some extent also in strained nanocrystalline graphene. Figure 4 shows a
PDF
Album
Full Research Paper
Published 08 Apr 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • intensively. In addition to linear effects, non-linear scanner behavior such as creep [1][4][10][11][12][13] and hysteresis [1][2][4][10][14][15][16][17] has been analyzed and corrected. The second prominent artifact causing distortion of SPM images is (thermal) drift. Because of the serial nature of the
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • that Technora® exhibits a narrower distribution in tensile strength, as well as greater creep and fatigue resistance [6][7]. Separate studies of fiber multifunctional properties also showed that Technora® exhibits resistance to moisture and chemical degradation [1][8]. The aforementioned studies have
  • differentiation in Technora®, evidenced here via real-space scans, should also lead to more consistent strength values. Additional mechanical properties Significant connections can also be made between the structures of Technora® and Kevlar® fibers and other mechanical properties, such as creep and fatigue
  • . Ferreira et al. demonstrated that, while neither Technora® nor Kevlar® fibers exhibit significant amounts of creep deformation, Technora® fibers creep slightly less [6]. They hypothesized that this distribution stems from more local links between adjacent molecular chains in Technora® than between
PDF
Album
Full Research Paper
Published 05 Oct 2023

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • higher temperature shortly after the laser pulse, or by creep motion of the domain wall at longer times after the pulse. Such a creep motion of sharp domain ends has been studied in detail by Cao et al. in Co/Gd stacks sandwiched by Pt or Ta [22]. To further investigate the effect of magnetic domain
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • by such features as a flux creep and the change in the IVC curvature associated with the crossover from the flux flow to Josephson junction behavior [44]. That is why, as it will be shown below, in the region of low temperatures, the agreement between the experiment and the numerical calculation is
PDF
Album
Full Research Paper
Published 23 Nov 2021

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • our example material plotted along the real axis. For this material, the theoretical retardance for z = 1 (this is the vertical-axis intercept, since the horizontal axis is ln(z) and ln(1) = 0) is the same as the equilibrium compliance of the material, also known as the creep compliance, for which the
  • multiply with the appropriate operator (calculated relaxance or retardance). The result of this multiplication is the material response in the z-domain, from which the time-domain response can be obtained via the inverse Z-transform. Figure 10 shows the result of calculating the creep (strain) response of
  • viscoelastic inversion analysis [20]. To calculate the creep response, stress and strain were evaluated for a ramp input as in Equation 27 and Equation 28, for a shorter time period with a larger time step. The strain was calculated for 0.045 s with a timestep of 0.001 s. The subsequently calculated retardance
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Correction: Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 137–138, doi:10.3762/bjnano.12.10

Graphical Abstract
  • microscopy (AFM); creep; force mapping; indentation; Kelvin–Voigt; static force spectroscopy (SFS); viscoelasticity; In the “Useful Viscoelastic Quantities” section of the original publication, it is stated that the storage modulus (E′) and storage compliance (J′) are inverses of one another (Equation 10
PDF
Original
Article
Correction
Published 28 Jan 2021

Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 922–937, doi:10.3762/bjnano.11.77

Graphical Abstract
  • microscopy (AFM); creep; force mapping; indentation; Kelvin–Voigt; static force spectroscopy (SFS); viscoelasticity; Introduction Modern AFM applications commonly involve testing samples that are soft, biological, or polymeric in nature. Understanding the dissipative nature of these materials at the
  • solution for the AFM experiment. It is originally presented as Equation 3 in their paper [17]. Extending the solution to an arbitrary load history Traditionally, when using creep-recovery experiments to parameterize the viscoelastic models under study, a constant stress is first applied to a sample and
  • boundary conditions for such an approach dictate a step function in stress, and that one end of the sample is fixed. In that case, the constant load history would suggest using the “creep compliance” J(t), an engineering quantity that represents the change in strain as a function of the time for a medium
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Jun 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • were considered because the retraction curves have been previously shown to be affected by creep of the piezoelectric actuator and energy dissipation processes [51][52]. These artifacts and dissipation processes are indistinguishable from the interaction forces, rendering the retraction curves far more
PDF
Album
Full Research Paper
Published 06 May 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • of images while keeping exactly the same tip–sample relative positioning because of thermal drift and piezo creep. To avoid lateral misalignment artefacts, a better option is to record a matrix of spectroscopic curves of the pp-KPFM signal on a 2D grid. In this work, we explore the performance of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • reduce thermal drift and piezo creep to a minimum during measurements. Typical tunnelling conditions were Vb = 0.05 to 0.19 V and It = 0.6 nA. Images represent raw data and were analyzed using the WSxM software [52]. (a) STM image of a 160 nm wide, one-layer thick graphene flake (encircled); (b) cut out
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • lattice parameters as well as the number, type, and orientation of molecules within a unit cell. In general, the STM experiments conducted under ambient conditions are prone to thermal drift and suffer from piezo creep and hysteresis. To overcome this limitation, the acquired STM images were corrected by
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • element for hydrogen-sensing applications [23]. The mechanical properties of nanoporous samples have been extensively studied in the literature, especially for the model system of nanoporous gold (npAu). Reports on potential-controlled creep [24], fracture [25] and strength [26] in npAu add to the list of
PDF
Album
Full Research Paper
Published 10 Dec 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • ageing have been identified, e.g., material creep [5], structural changes in the interfacial contact [6][7] or an increase in number of chemical bonds [8][9]. The frictional strength may also grow in time by rotation of the contacting surfaces into a preferred misorientation defined by dislocation
  • turning points varied between 252 μs and 3.9 ms. Hold times and velocities were varied randomly in order to identify possible systematic errors. The stationary contact in FFM is prone to unwanted movements caused by creep of the piezo actuator and by instrumental drift upon temperature changes. To
PDF
Album
Full Research Paper
Published 05 Jun 2018

Automated image segmentation-assisted flattening of atomic force microscopy images

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li and
  • Huimin Wang

Beilstein J. Nanotechnol. 2018, 9, 975–985, doi:10.3762/bjnano.9.91

Graphical Abstract
  • exhibited in AFM images. Additionally, some other factors, such as hysteresis (Figure 1c), creep (Figure 1d), and nonlinearity (Figure 1e) of x–y and z-scanners and vibration from the environment can also cause distortion and artifacts in AFM images [20][22][23][24]. AFM images generally display a tilting
  • present in AFM images. (a) Schematic diagram of an AFM system, consisting of an x–y and a z-scanner. (b–e) Mechanism of distortion and artifacts caused by thermal drift, hysteresis, creep, and nonlinearity of a scanner. Illustration of the proposed method for AFM image flattening. (a) Sketch of a
PDF
Album
Full Research Paper
Published 26 Mar 2018

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • ], manufacturing processes to transfer objects [23] and plasters in medicine [24]. Polymer-based dry adhesives [25][26][27] benefit from easy fabrication routes and low production cost. However, there are several polymer-related problems, such as thermal instability at elevated temperatures and creep [28
  • force. Furthermore, dry adhesives made from 1D-CNs do not suffer from creep, cosmic radiation, or vast temperature changes. Consequently, they are of great interest for applications under harsh conditions such as space technology. However, it is a challenge to grow CNTs or CNFs with uniform morphology
PDF
Album
Full Research Paper
Published 15 Dec 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • input are related through a material transfer function, which contains the viscoelastic parameters. Standard inputs are typically strain and stress step functions (in the case of stress relaxation and creep experiments, respectively) or harmonic excitations (in the case of DMA). Following the spirit of
  • using Laplace transforms. The displacement response at steady state is (see Supporting Information File 1 for details on the derivation): where J(t) is the creep compliance of the material (strain response to a unit step stress [8][30]), J′(ω) is the storage compliance and accompanies the portion of the
  • the strain retardation (creep) function, J(t) [36]. However, for the first part of the derivation, the value of t″ is not available, so we temporarily regard the excitation as: knowing in advance that, at some point, the response calculated through this technique will not be applicable for times
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

Noise in NC-AFM measurements with significant tip–sample interaction

  • Jannis Lübbe,
  • Matthias Temmen,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2016, 7, 1885–1904, doi:10.3762/bjnano.7.181

Graphical Abstract
  • interaction and would yield creep or overshoot in the step response. For the optimisation of the distance control loop, a Δf(zp) curve should be obtained first and the slope of the Δf(zp) curve at the desired working point (βts = 12.3 Hz/nm, see Figure 4) should be used to simulate the frequency response of
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2016

A new approach to grain boundary engineering for nanocrystalline materials

  • Shigeaki Kobayashi,
  • Sadahiro Tsurekawa and
  • Tadao Watanabe

Beilstein J. Nanotechnol. 2016, 7, 1829–1849, doi:10.3762/bjnano.7.176

Graphical Abstract
  • materials. In recent years, the control of brittle fracture [37][38], creep deformation [39][40][41], fatigue fracture [42][43][44][45], corrosion [46][47][48][49] and stress corrosion cracking [40][41][50][51] have been successfully achieved by applying the concept of GBE based on the control of GBCD and
  • materials with an extremely high density of grain boundaries is different in polycrystalline materials with conventional grain structure. Grain boundary sliding, grain boundary diffusion-controlled creep, and the contribution of triple line diffusion have been proposed as possible mechanisms of deformation
PDF
Album
Review
Published 25 Nov 2016

Generalized Hertz model for bimodal nanomechanical mapping

  • Aleksander Labuda,
  • Marta Kocuń,
  • Waiman Meinhold,
  • Deron Walters and
  • Roger Proksch

Beilstein J. Nanotechnol. 2016, 7, 970–982, doi:10.3762/bjnano.7.89

Graphical Abstract
  • ][5], force modulation [6][7], phase imaging [8][9], loss tangent imaging [10], friction force microscopy [11], creep compliance [12], shear modulation force microscopy [13], pulsed force microscopy [14] and torsional approaches [15]. These techniques can be broadly classified as either “parametric
PDF
Album
Full Research Paper
Published 05 Jul 2016

Understanding interferometry for micro-cantilever displacement detection

  • Alexander von Schmidsfeld,
  • Tobias Nörenberg,
  • Matthias Temmen and
  • Michael Reichling

Beilstein J. Nanotechnol. 2016, 7, 841–851, doi:10.3762/bjnano.7.76

Graphical Abstract
  • nm ≥ λ/8, while Vsig is observed with an oscilloscope similar to procedures suggested in [13]. The modulation frequency is chosen to avoid mechanical resonances and piezo creep. Dips appear at positions of maximum and minimum Vsig as schematically illustrated in the inset of Figure 4, as the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • ). The lateral lag (due to thermal drift and piezoelectric actuator creep) between the set of images used for the SPV calculation was corrected by using the lattice tool of the WsXM software [22] (see Figure S9 in Supporting Information File 1). After correcting the images, the residual lateral error in
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016
Graphical Abstract
  • behaviors, namely creep and stress relaxation [13][14][18][25]. There exist simpler models [13], such as the Maxwell model by itself (described above) and the Kelvin–Voigt model, which consists of a linear spring in parallel with a linear damper (this model is used in CR-AFM [3]). However, in the former
  • with respect to creep and stress relaxation. However, in its previous form [22], it lacks interaction between adjacent area elements, and thus, it does not produce a physically correct shape for the surface profiles that emerge upon indentation by the AFM tip. This is because the only area elements
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2015, 6, 2233–2241, doi:10.3762/bjnano.6.229

Graphical Abstract
  • fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the
  • analytical models cannot reproduce stress relaxation and creep [10][11]. Within AFM, this means that when the tip and sample are held in contact at a fixed relative position, the model must exhibit a time-dependent reduction in the stress (stress relaxation). Additionally, when the tip and sample are held in
  • possible, in parallel with the linear spring k1 allows the model to exhibit the desired viscoelastic behaviors, namely stress relaxation, creep, and also the ability to fully but gradually (not instantaneously) recover when all forces are removed. Additional details on stress relaxation and creep
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • compliant sample surface, an extension of the z-scanner also leads to a penetration of the AFM tip into the sample surface by the penetration depth δ = Z − D. While the cantilever deflection D is calibrated independently, the height value Z is subject to drift or creep effects of the piezoelectric scanner
  • . The accuracy in δ is thus limited by piezoelectric creep of the AFM scanner. In order to minimize vertical drift, the tip position was equilibrated before each indentation by recording a slow 500 × 500 nm2 scan of the area to be indented by AFM. Indentation measurements were then started from the
  • position of the scanner during nc-AFM imaging, i.e., half of the oscillation amplitude or a few nanometers above the surface. In order to further account for piezoelectric creep effects during rate-dependent measurements a drift difference ΔZdrift with regard to the fastest measurement was calculated
PDF
Album
Full Research Paper
Published 13 Aug 2015
Other Beilstein-Institut Open Science Activities