Magnetic interactions between nanoparticles

Steen Mørup, Mikkel Fougt Hansen and Cathrine Frandsen
Beilstein J. Nanotechnol. 2010, 1, 182–190. https://doi.org/10.3762/bjnano.1.22

Cite the Following Article

Magnetic interactions between nanoparticles
Steen Mørup, Mikkel Fougt Hansen and Cathrine Frandsen
Beilstein J. Nanotechnol. 2010, 1, 182–190. https://doi.org/10.3762/bjnano.1.22

How to Cite

Mørup, S.; Hansen, M. F.; Frandsen, C. Beilstein J. Nanotechnol. 2010, 1, 182–190. doi:10.3762/bjnano.1.22

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ureña Horno, E.; Maguire, M. L.; Ozkan, S.; O'Brien, L.; Murray, P.; Poptani, H.; Giardiello, M. Strategies towards standardizing calibration methods for magnetic particle imaging (MPI) signal quantification: solution vs. cellular environments. Nanoscale 2025, 17, 24060–24071. doi:10.1039/d5nr03025k
  • Alatzoglou, C.; Patila, M.; Ziogas, P. G.; Skonta, A.; Politi, D.; Spyrou, K.; Kaloudi, A. S.; Douvalis, A. P.; Gournis, D. P.; Stamatis, H. Green synthesis of magnetic bio-Graphene nanohybrid for the immobilization of hydrolytic enzymes towards sustainable bioconversion of cellulose. RSC advances 2025, 15, 37194–37208. doi:10.1039/d5ra06271c
  • Ziogas, P. G.; Bourlinos, A. B.; Chatzopoulou, P.; Dimitrakopulos, G. P.; Markou, A.; Douvalis, A. P. Growing ferromagnetic Fe–Ni alloy nanoparticles on nanodiamond nanotemplates: the role of sp2-type carbon in their development and in the appearance of a martensitic-type phase. Journal of Materials Chemistry C 2025, 13, 18145–18166. doi:10.1039/d5tc01095k
  • Ali, Z.; Asparin, A.; Zhang, Y.; Mettee, H.; Taha, D.; Ha, Y.; Bhanot, D.; Sarwar, K.; Kiran, H.; Wu, S.; Wei, H. Automatic design and optimization of MRI-based neurochemical sensors via reinforcement learning. Discover nano 2025, 20, 148. doi:10.1186/s11671-025-04338-z
  • Urbánová, L.; Bujdoš, M.; Cesnek, M.; Miglierini, M.; Čavojský, M.; Machata, P.; Mičušík, M.; Kollár, J.; Matúš, P.; Urík, M. Impact of temperature and humic acid-assisted synthesis on selenium sorption onto iron oxide nanoparticles. Journal of Water Process Engineering 2025, 76, 108119. doi:10.1016/j.jwpe.2025.108119
  • Kumar, A.; Kumar, A.; Tiwary, D.; Mandal, K. Optical and Magnetic Properties of Co-V-doped TiO2 Synthesized via Chemical Route. Semiconductors 2025, 59, 668–677. doi:10.1134/s106378262460270x
  • Zambach, M.; Ouyang, Z.; Knaapila, M.; Beleggia, M.; Frandsen, C. Design of superparamagnetic nanoparticle-materials for high-frequency inductor cores. APL Materials 2025, 13. doi:10.1063/5.0275285
  • Karaly, A. H.; Kelland, M. A.; Mady, M. F. Balanced Phosphonated Polyethylenimine–Citrate-Functionalized Superparamagnetic Nanoparticles for Efficient Scale Inhibition in a Harsh Brine Environment. Energy & Fuels 2025, 39, 12620–12630. doi:10.1021/acs.energyfuels.5c01138
  • Kubiak, T.; Dobosz, B. Road Map for the Use of Electron Spin Resonance Spectroscopy in the Study of Functionalized Magnetic Nanoparticles. Materials (Basel, Switzerland) 2025, 18, 2841. doi:10.3390/ma18122841
  • Won, S.; Kim, M.; Lee, J.; Ko, Y. J.; Yang, K.; Lee, H. E.; Kim, Y. J.; Jung, J. H.; Kim, J. K.; Hyun, K.; Wie, J. J. Pivotal Role of Nanoparticle Distribution on Agile Steering of Magnetic Microrobots. Chemistry of Materials 2025, 37, 4350–4362. doi:10.1021/acs.chemmater.5c00290
  • Martín, C.; Perfecto-Irigaray, M.; Beobide, G.; Solana-Madruga, E.; Ávila-Brande, D.; Laso-Quesada, M.; de Pedro, I.; Casado-Carmona, F. A.; Lucena, R.; Cardenas, S.; Cano, I. Developing a Highly Efficient and Magnetically Recoverable Nanocatalyst for Glycolytic Depolymerization of Various Polyesters. ACS sustainable chemistry & engineering 2025, 13, 7890–7903. doi:10.1021/acssuschemeng.5c01220
  • Ansari, S. R.; Imhoff, E. D.; Suárez-López, Y. D. C.; Melnyk, A.; Rinaldi-Ramos, C. M.; Teleki, A. Flame-Made Doped Iron Oxide Nanoparticles as Tracers for Magnetic Particle Imaging. Chemistry of materials : a publication of the American Chemical Society 2025, 37, 4071–4084. doi:10.1021/acs.chemmater.5c00331
  • Talone, A.; Maltoni, P.; Casale, M.; Abdolrahimi, M.; Slimani, S.; Colombara, D.; Leoncino, L.; Imperatori, P.; Laureti, S.; Varvaro, G.; Peddis, D. Novel Formulation of Ionic Liquid-Based Ferrofluids: Investigation of the Magnetic Properties. Langmuir : the ACS journal of surfaces and colloids 2025, 41, 11977–11986. doi:10.1021/acs.langmuir.5c00403
  • López-Martín, R.; Lepesant, M.; Lacroix, L.-M.; De Toro, J. A.; López-Ortega, A. High-temperature superspin glass and low-temperature glassy exchange bias in passivated FeCo nanoparticles. Surfaces and Interfaces 2025, 65, 106514. doi:10.1016/j.surfin.2025.106514
  • Bocquet, H.; Kleibert, A.; Derlet, P. M. Impact of Planar Defects on the Reversal Time of Single Magnetic Domain Nanoparticles. Physical review letters 2025, 134, 136702. doi:10.1103/physrevlett.134.136702
  • Knyazev, Y. V.; Kirillov, V. L.; Krasikov, A. A.; Skorobogatov, S. A.; Velikanov, D. A.; Volochaev, M. N.; Smorodina, E. D.; Bayukov, O. A.; Martyanov, O. N.; Balaev, D. A. Embedded ferrihydrite nanoparticles in a SiO2 medium with enhanced superparamagnetic blocking temperature. Ceramics International 2025, 51, 5020–5030. doi:10.1016/j.ceramint.2024.11.473
  • Lyaschenko, S.; Tarasov, I.; Andryushchenko, T.; Yakovlev, I.; Velikanov, D.; Volochaev, M.; Nemtsev, I.; Kriukov, R.; Maximova, O.; Shevtsov, D.; Varnakov, S.; Ovchinnikov, S. Shell structure, magnetic and magnetodynamic properties of oxidized iron nanoparticles with partial gold coating. New Journal of Chemistry 2025, 49, 1619–1630. doi:10.1039/d4nj05015k
  • Elkady, H.; Hassan, H. Impact of single/hybrid hematite and magnetite nanoparticles addition on the evaporation of suspended heptane droplet: experimental investigation. Experimental Heat Transfer 2024, 39, 88–105. doi:10.1080/08916152.2024.2447799
  • Singh, A.; Kulkarni, S. P.; Patel, R. S.; Narayanan, R. A.; Gopalan, B. Pore Engineering in γ-Fe2O3 Nanoparticles: Hierarchical Pores by Controlled Lixiviation Using Citrate Ligands. The Journal of Physical Chemistry C 2024, 129, 627–637. doi:10.1021/acs.jpcc.4c05806
  • Krajewski, M.; Rudolf, R.; Švarc, T.; Majerič, P.; Sobczak, K.; Lewińska, S.; Osial, M.; Tokarczyk, M. Synthesis and characterization of magnetically-active nickel-yttrium oxide (Ni-Y2O3) nanocomposite particles prepared with modified ultrasound spray pyrolysis device. Journal of Materials Science 2024, 60, 253–266. doi:10.1007/s10853-024-10517-7

Patents

  • GLENN DAVID R; CONNOLLY COLIN B; RANDALL JEFFREY D. BEAD SYSTEMS, METHODS, AND APPARATUS FOR MAGNETIC BEAD-BASED ANALYTE DETECTION. EP 4058804 A4, Nov 15, 2023.
  • CONNOLLY COLIN B; BLANEY GILES P; LENNHOFF AKIM; RANDALL JEFFREY D; QUINTUS-BOSZ HARALD; SCHECHTER STUART E; RITSHER KENNETH A; HOSSEINKHANNAZER HOOMAN; MCKINNON GRAHAM. Methods and apparatus for sample measurement. US 11614405 B2, March 28, 2023.
  • CONNOLLY COLIN B; RANDALL JEFFREY D; PENA JOHN C. Methods and apparatus for magnetic multi-bead assays. US 11513115 B2, Nov 29, 2022.
  • CONNOLLY COLIN B; BLANEY GILES P; LENNHOFF AKIM; RANDALL JEFFREY D; QUINTUS-BOSZ HARALD; SCHECHTER STUART E; RITSHER KENNETH A; HOSSEINKHANNAZER HOOMAN; MCKINNON GRAHAM. Methods and apparatus for sample measurement. US 11143594 B2, Oct 12, 2021.
  • GLENN DAVID; CONNOLLY COLIN; RANDALL JEFFREY. BEAD SYSTEMS, METHODS, AND APPARATUS FOR MAGNETIC BEAD-BASED ANALYTE DETECTION. WO 2021096725 A1, May 20, 2021.
  • GRANGER MICHAEL C; PARK JOONEON; PORTER MARC D. Discrete magnetic nanoparticles. US 10427183 B2, Oct 1, 2019.
Other Beilstein-Institut Open Science Activities