Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

Sunandan Baruah, Mohammad Abbas Mahmood, Myo Tay Zar Myint, Tanujjal Bora and Joydeep Dutta
Beilstein J. Nanotechnol. 2010, 1, 14–20. https://doi.org/10.3762/bjnano.1.3

Cite the Following Article

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods
Sunandan Baruah, Mohammad Abbas Mahmood, Myo Tay Zar Myint, Tanujjal Bora and Joydeep Dutta
Beilstein J. Nanotechnol. 2010, 1, 14–20. https://doi.org/10.3762/bjnano.1.3

How to Cite

Baruah, S.; Mahmood, M. A.; Myint, M. T. Z.; Bora, T.; Dutta, J. Beilstein J. Nanotechnol. 2010, 1, 14–20. doi:10.3762/bjnano.1.3

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bora, T.; Mohammed, W. S. Light Scattering by One-Dimensional ZnO Nanorods and Their Applications in Optical Sensing. Advanced Structured Materials; Springer Nature Singapore, 2024; pp 117–142. doi:10.1007/978-981-99-7848-9_6
  • Alsharyani, A. K.; Muruganandam, L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator. RSC advances 2024, 14, 9038–9049. doi:10.1039/d4ra00672k
  • Daher, E. A.; Al Redda, A.; Robert, C. L.; Hamd, W. Design of a new ZnO photocatalytic Fenton-like system for enhancing the removal of methylene blue at neutral pH. Ceramics International 2024. doi:10.1016/j.ceramint.2024.02.243
  • Daher, E. A.; Boissière, C.; Robert, C. L.; Hamd, W. Investigating the impact of chemical structures on the photocatalytic degradation rates over ZnO nanorods: An oxidative pathways perspective. Catalysis Communications 2023, 185, 106807. doi:10.1016/j.catcom.2023.106807
  • Gultepe, O.; Atay, F.; Dikmen, Z. An effective approach for hydrothermal synthesis of ZnO nanorod arrays activated under UV/Vis light: Different supporting ligands for hydrothermal precursor solutions. Materials Chemistry and Physics 2023, 307, 128170. doi:10.1016/j.matchemphys.2023.128170
  • Dhiman, S.; Sharma, C.; Kumar, A.; Pathak, P.; Purohit, S. D. Microplastics in Aquatic and Food Ecosystems: Remediation Coupled with Circular Economy Solutions to Create Resource from Waste. Sustainability 2023, 15, 14184. doi:10.3390/su151914184
  • Folawewo, A. D.; Bala, M. D. Visible light treatment of azo dye-contaminated water by Ni- and Co-doped-ZnO nanoparticles supported on carbon-covered alumina. Water Practice & Technology 2023, 18, 1898–1922. doi:10.2166/wpt.2023.123
  • Al-Sharji, Z.; Al-Sabahi, J.; Kyaw, H. H.; Myint, M. T. Z.; Al-Abri, M. Plasmon enhanced photocatalytic degradation of 4-chlorophenol using zinc oxide nanorods decorated with gold nanoparticles as supported catalysts under natural sunlight. Chemical Engineering and Processing - Process Intensification 2023, 188, 109369. doi:10.1016/j.cep.2023.109369
  • Borah, N.; Tamuly, C. Emerging nano photo-catalysts for degradation of paracetamol and its prospective: a short review. International Journal of Environmental Analytical Chemistry 2023, 1–16. doi:10.1080/03067319.2023.2215164
  • Giasari, A. S.; Maharani Muharam, A. P.; Syampurwadi, A.; Dedi; Eddy, D. R.; Primadona, I. Morphological effect of one-dimensional ZnO nanostructures on the photocatalytic activity. Journal of Physics and Chemistry of Solids 2023, 176, 111259. doi:10.1016/j.jpcs.2023.111259
  • Abubakar, S.; Tan, S. T.; Liew, J. Y. C.; Talib, Z. A.; Sivasubramanian, R.; Vaithilingam, C. A.; Indira, S. S.; Oh, W.-C.; Siburian, R.; Sagadevan, S.; Paiman, S. Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators. Nanomaterials (Basel, Switzerland) 2023, 13, 1025. doi:10.3390/nano13061025
  • Mohamed, M.; Alfatah, A. A.; Alshammari, A. S. Structure, linear and nonlinear optical and photocatalytic properties investigation of ZnO nanorods: influence of growth time. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-09912-8
  • Vlassov, S.; Bocharov, D.; Polyakov, B.; Vahtrus, M.; Šutka, A.; Oras, S.; Zadin, V.; Kyritsakis, A. Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires. Nanotechnology Reviews 2023, 12. doi:10.1515/ntrev-2022-0505
  • Shu, J.; Wang, K.; Sharma, V. K.; Xu, X.; Nesnas, N.; Wang, H. Efficient micropollutants degradation by ferrate(VI)-Ti/Zn LDH composite under visible light: Activation of ferrate(VI) and self-formation of Fe(III)-LDH heterojunction. Chemical Engineering Journal 2023, 456, 141127. doi:10.1016/j.cej.2022.141127
  • Istiroyah, I.; Irawan, M. F. D.; Utami, T. S.; Maulana, F.; Engge, Y.; Harsono, H.; Nurhuda, M. Effect of N doping on ZnO photocatalyst material on optical absorption and energy band gap. In PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity, AIP Publishing, 2023. doi:10.1063/5.0172184
  • Sousa Neto, V. d. O.; Saraiva, G. D.; De Castro, A. J. R.; Cavalcante Freire, P. d. T.; Do Nascimento, R. F. Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method. Journal of Composites and Biodegradable Polymers 2022, 10, 19–42. doi:10.12974/2311-8717.2022.10.03
  • Al-Khadhuri, A.; Al-Sabahi, J.; Kyaw, H. H.; Myint, M. T. Z.; Al-Farsi, B.; Al-Abri, M. Photocatalytic degradation toward pharmaceutical pollutants using supported zinc oxide nanorods catalyzed visible light system. International Journal of Environmental Science and Technology 2022, 20, 10021–10030. doi:10.1007/s13762-022-04705-8
  • Folawewo, A. D.; Bala, M. D. Carbon-covered alumina-supported ZnO nanocatalysts with enhanced visible light photocatalytic performance for the removal of dyes. Environmental Technology & Innovation 2022, 28, 102866. doi:10.1016/j.eti.2022.102866
  • Lu, S.; Ma, Y.; Zhao, L. Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis. Journal of Molecular Liquids 2022, 364, 119924. doi:10.1016/j.molliq.2022.119924
  • Hassan, M. S.; Attia, M. K.; Attia, R. Antimicrobial properties of cotton fabrics coated with silicone rubber/ZnO nanocomposites under the effect of UV irradiation. Journal of Industrial Textiles 2022, 52, 152808372211198. doi:10.1177/15280837221119836

Patents

  • CHEN MI; LIN CHING CHENG; KOO HORNG SHOW. Method for synthesizing zinc oxide nanorods with a microwave hydrothermal method. TW I419840 B, Dec 21, 2013.
Other Beilstein-Institut Open Science Activities