Preparation, properties and applications of magnetic nanoparticles

Ulf Wiedwald and Paul Ziemann
Beilstein J. Nanotechnol. 2010, 1, 21–23. https://doi.org/10.3762/bjnano.1.4

Cite the Following Article

Preparation, properties and applications of magnetic nanoparticles
Ulf Wiedwald and Paul Ziemann
Beilstein J. Nanotechnol. 2010, 1, 21–23. https://doi.org/10.3762/bjnano.1.4

How to Cite

Wiedwald, U.; Ziemann, P. Beilstein J. Nanotechnol. 2010, 1, 21–23. doi:10.3762/bjnano.1.4

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mishra, A. Effect of surface potential and charge transfer mechanism in reduced graphene oxide and magnetic nanocomposites. Materials Research Bulletin 2018, 108, 207–213. doi:10.1016/j.materresbull.2018.09.001
  • Efremova, M. V.; Nalench, Y. A.; Myrovali, E.; Garanina, A. S.; Grebennikov, I. S.; Gifer, P. K.; Abakumov, M. A.; Spasova, M.; Angelakeris, M.; Savchenko, A. G.; Farle, M.; Klyachko, N. L.; Majouga, A. G.; Wiedwald, U. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein journal of nanotechnology 2018, 9, 2684–2699. doi:10.3762/bjnano.9.251
  • Mishra, A.; Mohanty, T. One step synthesis of Fe3O4/GO nanocomposites at 100°C and its magnetic properties. Integrated Ferroelectrics 2017, 184, 178–185. doi:10.1080/10584587.2017.1368648
  • Mishra, A.; Singh, V. K.; Mohanty, T. Coexistence of Interfacial Stress and Charge Transfer in Graphene Oxide based Magnetic Nanocomposites. Journal of Materials Science 2017, 52, 7677–7687. doi:10.1007/s10853-017-1062-1
  • Pandya, S. R.; Singh, M. Synthesis of nanomagnetic fluids and their UV spectrophotometric response with aliphatic organic acids and 1st tier dendrimers. In AIP Conference Proceedings, American Institute of Physics, 2016; pp 020107 ff. doi:10.1063/1.4945227
  • Pandya, S. R.; Singh, M. Dispersion and optical activities of newly synthesized magnetic nanoparticles with organic acids and dendrimers in DMSO studied with UV/vis spectrophotometry. Journal of Molecular Liquids 2015, 211, 146–156. doi:10.1016/j.molliq.2015.06.068
  • Azum, N.; Khan, S. B.; Rub, M. A.; Asiri, A. M.; Alamry, K. A. Kinetic Behavior of Cobalt Nanoparticles Facilitated by Cationic Surfactant. Chemical Engineering Communications 2015, 203, 446–451. doi:10.1080/00986445.2015.1017637
  • Bouremana, A.; Guittoum, A.; Hemmous, M.; Rahal, B.; Suñol, J. J.; Martínez-Blanco, D.; Blanco, J. A.; Gorria, P.; Benrekaa, N. Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route. Journal of Magnetism and Magnetic Materials 2014, 358, 11–15. doi:10.1016/j.jmmm.2014.01.036
  • Wegscheid, M. L.; Morshed, R. A.; Cheng, Y.; Lesniak, M. S. The art of attraction: applications of multifunctional magnetic nanomaterials for malignant glioma. Expert opinion on drug delivery 2014, 11, 957–975. doi:10.1517/17425247.2014.912629
  • Mittal, J. Synthesis of Co Filled Carbon Nanotubes by In Situ Reduction of CoCl2 Filled Nanotubes by NaBH4. ISRN Materials Science 2013, 2013, 1–4. doi:10.1155/2013/732974
  • Enderle, F.; Dubbers, O.; Plettl, A.; Ziemann, P. J. Controlled positioning of nanoparticles on a micrometer scale. Beilstein journal of nanotechnology 2012, 3, 773–777. doi:10.3762/bjnano.3.86
  • Allia, P. M. E. I.; Tiberto, P. Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles. Journal of Nanoparticle Research 2011, 13, 7277–7293. doi:10.1007/s11051-011-0642-2
  • Ziemann, P. J. Organic-inorganic nanosystems. Beilstein journal of nanotechnology 2011, 2, 363–364. doi:10.3762/bjnano.2.41
Other Beilstein-Institut Open Science Activities