Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

Giulia Tuci, Andree Iemhoff, Housseinou Ba, Lapo Luconi, Andrea Rossin, Vasiliki Papaefthimiou, Regina Palkovits, Jens Artz, Cuong Pham-Huu and Giuliano Giambastiani
Beilstein J. Nanotechnol. 2019, 10, 1217–1227. https://doi.org/10.3762/bjnano.10.121

Supporting Information

Complementing material characterization, such as CHN elemental analysis, nitrogen adsorption−desorption isotherms, differential pore volume distributions, survey spectra and N 1s, O 1s core region XPS analyses, low-pressure CO2 adsorption–desorption isotherms, heats of adsorption (Qst), CO2 and N2 adsorption isotherms at 298 K, TPO and PXRD analyses.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 1.9 MB Download

Cite the Following Article

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance
Giulia Tuci, Andree Iemhoff, Housseinou Ba, Lapo Luconi, Andrea Rossin, Vasiliki Papaefthimiou, Regina Palkovits, Jens Artz, Cuong Pham-Huu and Giuliano Giambastiani
Beilstein J. Nanotechnol. 2019, 10, 1217–1227. https://doi.org/10.3762/bjnano.10.121

How to Cite

Tuci, G.; Iemhoff, A.; Ba, H.; Luconi, L.; Rossin, A.; Papaefthimiou, V.; Palkovits, R.; Artz, J.; Pham-Huu, C.; Giambastiani, G. Beilstein J. Nanotechnol. 2019, 10, 1217–1227. doi:10.3762/bjnano.10.121

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tuci, G.; Rossin, A.; Pugliesi, M.; Ba, H.; Duong‐Viet, C.; Liu, Y.; Pham‐Huu, C.; Giambastiani, G. doi:10.1002/9781119870647.ch12
  • Moro, M.; Tuci, G.; Rossin, A.; Salvatici, C.; Verlato, E.; Evangelisti, C.; Paolucci, F.; Valenti, G.; Liu, Y.; Giambastiani, G. An Ad-Hoc Pyrolized Phoenix-like Covalent Triazine Framework for the Selective CO2-to-Formate Electroreduction. ACS Materials Letters 2024, 6, 583–589. doi:10.1021/acsmaterialslett.3c01316
  • Amaraweera, S. M.; Gunathilake, C. A.; Gunawardene, O. H. P.; Dassanayake, R. S.; Cho, E.-B.; Du, Y. Carbon Capture Using Porous Silica Materials. Nanomaterials (Basel, Switzerland) 2023, 13, 2050. doi:10.3390/nano13142050
  • Ghosh, S. K.; Ghosh, M. Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers. Polysaccharides 2023, 4, 156–175. doi:10.3390/polysaccharides4020012
  • Iemhoff, A.; Vennewald, M.; Palkovits, R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie (International ed. in English) 2022, 62, e202212015. doi:10.1002/anie.202212015
  • Iemhoff, A.; Vennewald, M.; Palkovits, R. Einzelatomkatalysatoren auf kovalenten Triazinnetzwerken: am Scheidepunkt zwischen homogener und heterogener Katalyse. Angewandte Chemie 2022, 135. doi:10.1002/ange.202212015
  • Tuci, G.; Pugliesi, M.; Rossin, A.; Pham‐Huu, C.; Berretti, E.; Giambastiani, G. Design of a Novel Naphtiridine‐based Covalent Triazine Framework for Carbon Dioxide Capture and Storage Applications. ChemistrySelect 2022, 7. doi:10.1002/slct.202203560
  • Zakharov, V. N.; Kudryavtsev, I. K.; Dunaev, S. F.; Paseshnichenko, K. A.; Aslanov, L. A. Triazine 2D Nanosheets as a New Class of Nanomaterials: Crystallinity, Properties and Applications. Colloids and Interfaces 2022, 6, 20. doi:10.3390/colloids6020020
  • Tuci, G.; Iemhoff, A.; Rossin, A.; Yakhvarov, D.; Gatto, M. F.; Balderas-Xicohténcatl, R.; Zhang, L.; Hirscher, M.; Palkovits, R.; Pham-Huu, C.; Giambastiani, G. Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption. International Journal of Hydrogen Energy 2022, 47, 8434–8445. doi:10.1016/j.ijhydene.2021.12.197
  • Iemhoff, A.; Deischter, J.; Jung, S.; Tuci, G.; Giambastiani, G.; Palkovits, R. Polymer-inspired covalent triazine frameworks from the carbonaceous side – influence of unexpected surface functionalisation on liquid-phase adsorption processes. Journal of Materials Chemistry A 2021, 9, 5390–5403. doi:10.1039/d0ta10195h
  • Jena, H. S.; Krishnaraj, C.; Schmidt, J.; Leus, K.; Van Hecke, K.; Van Der Voort, P. Effect of Building Block Transformation in Covalent Triazine‐Based Frameworks for Enhanced CO2 Uptake and Metal‐Free Heterogeneous Catalysis. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 26, 1548–1557. doi:10.1002/chem.201903926
  • Khraisheh, M.; Mukherjee, S.; Kumar, A.; Al Momani, F.; Walker, G.; Zaworotko, M. J. An overview on trace CO2 removal by advanced physisorbent materials. Journal of environmental management 2019, 255, 109874. doi:10.1016/j.jenvman.2019.109874
Other Beilstein-Institut Open Science Activities