Cite the Following Article
Materials nanoarchitectonics at two-dimensional liquid interfaces
Katsuhiko Ariga, Michio Matsumoto, Taizo Mori and Lok Kumar Shrestha
Beilstein J. Nanotechnol. 2019, 10, 1559–1587.
https://doi.org/10.3762/bjnano.10.153
How to Cite
Ariga, K.; Matsumoto, M.; Mori, T.; Shrestha, L. K. Beilstein J. Nanotechnol. 2019, 10, 1559–1587. doi:10.3762/bjnano.10.153
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Brakat, A.; Zhu, H. 3D-shaped 3D-continuously graphene cellulose (3D2GC) architecture. Nano Research 2024, 17, 6695–6699. doi:10.1007/s12274-024-6634-1
- Eftekhari, K.; Parakhonskiy, B. V.; Grigoriev, D.; Skirtach, A. G. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. Materials (Basel, Switzerland) 2024, 17, 1051. doi:10.3390/ma17051051
- Rodriguez-Mendez, M. Nanostructured thin films as electrochemical sensors and biosensors for milk analysis. Sensors and Actuators Reports 2023, 6, 100179. doi:10.1016/j.snr.2023.100179
- Brakat, A.; Zhu, H. From Forces to Assemblies: van der Waals Forces-Driven Assemblies in Anisotropic Quasi-2D Graphene and Quasi-1D Nanocellulose Heterointerfaces towards Quasi-3D Nanoarchitecture. Nanomaterials (Basel, Switzerland) 2023, 13, 2399. doi:10.3390/nano13172399
- Ariga, K. Materials Nanoarchitectonics: Collaboration between Chem, Nano and Mat. ChemNanoMat 2023, 9. doi:10.1002/cnma.202300120
- Ariga, K. Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science. Beilstein journal of nanotechnology 2023, 14, 434–453. doi:10.3762/bjnano.14.35
- Martin, C. S.; Kavazoi, H. S.; Furini, L. N.; Alessio, P. Developments on Supramolecular Thin Films to Sensing Applications. Concepts and Design of Materials Nanoarchitectonics; The Royal Society of Chemistry, 2022; pp 304–336. doi:10.1039/9781788019613-00304
- Oliveira, O. N.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chemical reviews 2022, 122, 6459–6513. doi:10.1021/acs.chemrev.1c00754
- Ariga, K. doi:10.1002/9783527828722.ch3
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced materials (Deerfield Beach, Fla.) 2022, 34, 2107212. doi:10.1002/adma.202107212
- Ariga, K. Nanoarchitectonics. Nanostructure Science and Technology; Springer Singapore, 2021; pp 35–44. doi:10.1007/978-981-16-4189-3_2
- Ariga, K.; Fakhrullin, R. Nanoarchitectonics on living cells. RSC advances 2021, 11, 18898–18914. doi:10.1039/d1ra03424c
- Ariga, K. Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures 2021, 2, 2100006. doi:10.1002/sstr.202100006
- Ariga, K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules (Basel, Switzerland) 2021, 26, 1621. doi:10.3390/molecules26061621
- Ariga, K.; Shrestha, L. K. Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Materials Advances 2021, 2, 582–597. doi:10.1039/d0ma00744g
- Ariga, K.; Shionoya, M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan 2020, 94, 839–859. doi:10.1246/bcsj.20200362
- Ariga, K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small science 2020, 1, 2000032. doi:10.1002/smsc.202000032
- Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitectonics beyond Self‐Assembly: Challenges to Create Bio‐Like Hierarchic Organization. Angewandte Chemie (International ed. in English) 2020, 59, 15424–15446. doi:10.1002/anie.202000802
- Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angewandte Chemie 2020, 132, 15550–15574. doi:10.1002/ange.202000802
- Soares, A.; Soares, J. C.; Paschoalin, R. T.; da Cruz Rodrigues, V.; Melendez, M. E.; Reis, R. M.; Carvalho, A. L.; Mattoso, L. H. C.; Oliveira, O. N. Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. Materials science & engineering. C, Materials for biological applications 2020, 115, 111120. doi:10.1016/j.msec.2020.111120