Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

Chen Du, Shuo Wang, Xu Miao, Wenhai Sun, Yu Zhu, Chengyan Wang and Ruixin Ma
Beilstein J. Nanotechnol. 2019, 10, 2374–2382. https://doi.org/10.3762/bjnano.10.228

Cite the Following Article

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents
Chen Du, Shuo Wang, Xu Miao, Wenhai Sun, Yu Zhu, Chengyan Wang and Ruixin Ma
Beilstein J. Nanotechnol. 2019, 10, 2374–2382. https://doi.org/10.3762/bjnano.10.228

How to Cite

Du, C.; Wang, S.; Miao, X.; Sun, W.; Zhu, Y.; Wang, C.; Ma, R. Beilstein J. Nanotechnol. 2019, 10, 2374–2382. doi:10.3762/bjnano.10.228

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 664.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Biberger, S.; Leupold, N.; Witt, C.; Greve, C.; Markus, P.; Ramming, P.; Lukas, D.; Schötz, K.; Kahle, F.-J.; Zhu, C.; Papastavrou, G.; Köhler, A.; Herzig, E. M.; Moos, R.; Panzer, F. First of Their Kind: Solar Cells with a Dry‐Processed Perovskite Absorber Layer via Powder Aerosol Deposition and Hot‐Pressing. Solar RRL 2023, 7. doi:10.1002/solr.202300261
  • Pasha, A.; Pramanik, P.; George, J. K.; Dhiman, N.; Zhang, H.; Sidhik, S.; Mandani, F.; Ranjan, S.; Nagaraja, A. T.; Umapathy, S.; Mohite, A. D.; Balakrishna, R. G. Cationic and Anionic Vacancy Healing for Suppressed Halide Exchange and Phase Segregation in Perovskite Solar Cells. ACS Energy Letters 2023, 8, 3081–3087. doi:10.1021/acsenergylett.3c01024
  • Akhavan, S.; Ruocco, A.; Soavi, G.; Taheri Najafabadi, A.; Mignuzzi, S.; Doukas, S.; Cadore, A. R.; Samad, Y. A. K.; Lombardi, L.; Dimos, K.; Paradisanos, I.; Muench, J. E.; Watson, H. F. Y.; Hodge, S.; Occhipinti, L. G.; Lidorikis, E.; Goykhman, I.; Ferrari, A. C. Graphene-black phosphorus printed photodetectors. 2D Materials 2023, 10, 35015–035015. doi:10.1088/2053-1583/acc74c
  • 1. Physical parameters of the energy barrier of graphene/p-CdTe Schottky diodes. Functional Materials 2023, 30. doi:10.15407/fm30.01.12
  • Mei, D.; Qiu, L.; Chen, L.; Xie, F.; Song, L.; Wang, J.; Du, P.; Xiong, J. Incorporating polyvinyl pyrrolidone in green anti-solvent isopropanol: A facile approach to obtain high efficient and stable perovskite solar cells. Thin Solid Films 2022, 752, 139196. doi:10.1016/j.tsf.2022.139196
  • Dai, Z.; Xiong, J.; Liu, W.; Liu, N.; Dai, J.; Huang, Y.; Zhang, S.; Song, Q.; Zhang, Z.; Liang, W.; Zhang, J.; Dai, Q.; Zhang, J. Perovskite Films Treated with Polyvinyl Pyrrolidone for High-Performance Inverted Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5, 4448–4460. doi:10.1021/acsaem.1c04056
  • Bhardwaj, A.; Kushwaha, A. K. Effect of Dispersion Solutions on Optical Properties and Stability of CsPbBr3 Perovskite Nanocrystals. ECS Journal of Solid State Science and Technology 2022, 11, 36002–036002. doi:10.1149/2162-8777/ac5c80
  • Bkkar, M. A.; Olekhnovich, R. O.; Uspenskaya, M. V. Perovskite Nanocomposite Layers Engineering for Efficient and Stable Solar Cells. Journal of Nano Research 2022, 71, 71–109. doi:10.4028/www.scientific.net/jnanor.71.71
  • Saykar, N. G.; Arya, A.; Mahapatra, S. K. A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal of Physics D: Applied Physics 2021, 55, 043001. doi:10.1088/1361-6463/ac2d63
  • Hoang, M. T.; Ünlü, F.; Martens, W. N.; Bell, J.; Mathur, S.; Wang, H. Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry 2021, 23, 5302–5336. doi:10.1039/d1gc01756j
  • Mangrulkar, M.; Stevenson, K. J. The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells. Crystals 2021, 11, 814. doi:10.3390/cryst11070814
  • Kim, K.; Han, J.; Maruyama, S.; Balaban, M.; Jeon, I. Role and Contribution of Polymeric Additives in Perovskite Solar Cells: Crystal Growth Templates and Grain Boundary Passivators. Solar RRL 2021, 5, 2000783. doi:10.1002/solr.202000783
  • Li, J.; Wang, Y.; Liang, Z.; Wang, N.; Tong, J.; Yang, C.; Bao, X.; Xia, Y. Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS applied materials & interfaces 2019, 11, 7022–7029. doi:10.1021/acsami.8b20466
Other Beilstein-Institut Open Science Activities