Supporting Information
| Supporting Information File 1: Relative cell viability of MCF-7 breast cancer cells treated with different concentrations (6.25–100 μg/mL) of GNR@CdSe/ZnS for 24 h. TEM image of CdSe/ZnS QDs. | ||
| Format: PDF | Size: 472.3 KB | Download |
Cite the Following Article
Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots
Siyi Hu, Yu Ren, Yue Wang, Jinhua Li, Junle Qu, Liwei Liu, Hanbin Ma and Yuguo Tang
Beilstein J. Nanotechnol. 2019, 10, 22–31.
https://doi.org/10.3762/bjnano.10.3
How to Cite
Hu, S.; Ren, Y.; Wang, Y.; Li, J.; Qu, J.; Liu, L.; Ma, H.; Tang, Y. Beilstein J. Nanotechnol. 2019, 10, 22–31. doi:10.3762/bjnano.10.3
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 700.8 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wang, Q.; Yao, W.; Yan, C.; Wan, M.; Zhang, F.; Zhou, Y. Position-Dependent Fluorescence Enhancement in Core–Shell Nanoparticles: Synergistic Effects of Dipole Alignment and Multiemitter Coupling. The Journal of Physical Chemistry C 2025, 129, 16201–16211. doi:10.1021/acs.jpcc.5c05023
- Wu, L.; He, C.; Zhao, T.; Li, T.; Xu, H.; Wen, J.; Xu, X.; Gao, L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. Journal of nanobiotechnology 2024, 22, 366. doi:10.1186/s12951-024-02644-9
- Zvyagin, A. I.; Chevychelova, T. A.; Chirkov, K. S.; Smirnov, M. S.; Ovchinnikov, O. V.; Denisova, E. P. Nonlinear Optical Properties of Plasmon–Exciton Nanostructures Based on PbS Quantum Dots and Gold Nanorods in the Field of Nanosecond Laser Pulses. Journal of Russian Laser Research 2024, 45, 84–90. doi:10.1007/s10946-024-10191-9
- Zvyagin, A.; Chevychelova, T.; Chirkov, K.; Smirnov, M.; Ovchinnikov, O.; Selyukov, A.; Latyshev, A. Enhancement of Nonlinear Absorption of Nanosecond Laser Pulses in Mixtures of Ag2S Quantum Dots and Silver Nanoparticles. Bulletin of the Lebedev Physics Institute 2023, 50, S1532–S1535. doi:10.3103/s1068335623602121
- Vargas-Moreno, M.; Morales-Carbajal, R.; Villa-Angulo, R.; Olaf Hernández-Fuentes, I.; Villa-Angulo, C. Optical cooling at the optimal SPR angle of a glass–ITO–CdSe/ZnS(QDs) interface. Chemical Physics 2023, 572, 111963. doi:10.1016/j.chemphys.2023.111963
- Wu, L.; Huang, J.; Chen, D.; Fan, M.; Hu, M.; Zhou, C. Strong Purcell effect of magnetic quasi-BICs in the dielectric metasurface. New Journal of Physics 2023, 25, 73015–073015. doi:10.1088/1367-2630/ace2e1
- Beegum, K. A. B.; Sasi, S.; Thomas, C.; Mathew, A.; R, R. Surface plasmon resonance (SPR) in nanofibers of cesium titanium bromide CsTiBr3 synthesized by two-stage deposition technique. Physica Scripta 2023, 98, 65950–065950. doi:10.1088/1402-4896/acd4f9
- Grevtseva, I. G.; Ovchinnikov, O. V.; Smirnov, M. S.; Kondratenko, T. S.; Perepelitsa, A. S.; Hussein, A. M. H. Luminescence of Ag2S/SiO2 Colloidal Quantum Dots Decorated with Small Au Nanoparticles. Optics and Spectroscopy 2022, 130, 567–572. doi:10.1134/s0030400x22120025
- As'ham, K.; Al-Ani, I.; Lei, W.; Hattori, H. T.; Huang, L.; Miroshnichenko, A. Mie Exciton-Polariton in a Perovskite Metasurface. Physical Review Applied 2022, 18. doi:10.1103/physrevapplied.18.014079
- Che Lah, C. N. H.; Morisawa, H.; Kobayashi, K.; Ono, A.; Inami, W.; Kawata, Y. Autofluorescence Imaging of Living Yeast Cells with Deep-Ultraviolet Surface Plasmon Resonance. Photonics 2022, 9, 424. doi:10.3390/photonics9060424
- Grevtseva, I. G.; Ovchinnikov, O. V.; Smirnov, M. S.; Perepelitsa, A. S.; Chevychelova, T. A.; Derepko, V. N.; Osadchenko, A. V.; Selyukov, A. S. The structural and luminescence properties of plexcitonic structures based on Ag2S/l-Cys quantum dots and Au nanorods. RSC advances 2022, 12, 6525–6532. doi:10.1039/d1ra08806h
- Shariatzadeh, S.; Moghimi, N.; Khalafi, F.; Shafiee, S.; Mehrabi, M.; Ilkhani, S.; Tosan, F.; Nakhaei, P.; Alizadeh, A.; Varma, R. S.; Taheri, M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Frontiers in bioengineering and biotechnology 2022, 10, 847433. doi:10.3389/fbioe.2022.847433
- Grevtseva, I.; Ovchinnikov, O.; Smirnov, M.; Perepelitsa, A.; Chevychelova, T.; Derepko, V.; Osadchenko, A.; Selyukov, A. IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods. Optics express 2022, 30, 4668. doi:10.1364/oe.447200
- Ovchinnikov, O. V.; Smirnov, M. S.; Chevychelova, T. A.; Zvyagin, A. I.; Selyukov, A. S. Nonlinear absorption enhancement of Methylene Blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments 2022, 197, 109829. doi:10.1016/j.dyepig.2021.109829
- Abdullah, H. M.; Ahmed, K.; Alam, M. S.; Rashed, A. N. Z.; Mitu, S. A.; Al-Zahrani, F. A.; Kabir, A. High sensitivity refractive index sensor based on triple layer MgF2-gold-MgF2 coated nano metal films photonic crystal fiber. Optik 2021, 241, 166950. doi:10.1016/j.ijleo.2021.166950
- Chen, C.-Y.; Ni, C.-C.; Wu, R.-N.; Kuo, S.-Y.; Li, C.-H.; Kiang, Y.-W.; Yang, C. C. Surface plasmon coupling effects on the förster resonance energy transfer from quantum dot into rhodamine 6G. Nanotechnology 2021, 32, 295202. doi:10.1088/1361-6528/abf775
- Bansal, S. A.; Kumar, V.; Karimi, J.; Singh, A.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale advances 2020, 2, 3764–3787. doi:10.1039/d0na00472c
- Hu, S.; Zhang, B.; Zeng, S.; Liu, L.; Yong, K.-T.; Ma, H.; Tang, Y. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS2/ZnS quantum dots. Lab on a chip 2020, 20, 3001–3010. doi:10.1039/d0lc00202j
- Baral, M.; Prasad, S. K.; Bhat, S. A.; Nayak, R. A.; Yelamaggad, C. V. Conjunctive Photoluminescence Enhancement Through Plasmonic and Photonic Band-Gap Pathways in a Chiral Self-Assembled System. ChemPhotoChem 2020, 4, 582–591. doi:10.1002/cptc.202000077
- Ando, M.; Inagaki, K.; Kawasaki, H.; Biju, V.; Shigeri, Y. Photoluminescent Ozone Sensor with Enhanced Sensitivity by Using CdSe/ZnS Quantum Dots Modified with Gold and Platinum. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 2020, 36, 989–995. doi:10.2116/analsci.19p490