Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

Zoltán Scherübl, András Pályi and Szabolcs Csonka
Beilstein J. Nanotechnol. 2019, 10, 363–378. https://doi.org/10.3762/bjnano.10.36

Supporting Information

Supporting Information File 1: Derivation of the effective Hamiltonian, details of the particle-hole symmetry and additional transport data.
Format: PDF Size: 2.6 MB Download

Cite the Following Article

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup
Zoltán Scherübl, András Pályi and Szabolcs Csonka
Beilstein J. Nanotechnol. 2019, 10, 363–378. https://doi.org/10.3762/bjnano.10.36

How to Cite

Scherübl, Z.; Pályi, A.; Csonka, S. Beilstein J. Nanotechnol. 2019, 10, 363–378. doi:10.3762/bjnano.10.36

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 469.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Spethmann, M.; Bosco, S.; Hofmann, A.; Klinovaja, J.; Loss, D. High-fidelity two-qubit gates of hybrid superconducting-semiconducting singlet-triplet qubits. Physical Review B 2024, 109. doi:10.1103/physrevb.109.085303
  • Debbarma, R.; Tsintzis, A.; Aspegren, M.; Souto, R. S.; Lehmann, S.; Dick, K.; Leijnse, M.; Thelander, C. Josephson Junction π-0 Transition Induced by Orbital Hybridization in a Double Quantum Dot. Physical review letters 2023, 131, 256001. doi:10.1103/physrevlett.131.256001
  • Hodt, E. W.; Linder, J. On-off switch and sign change for a nonlocal Josephson diode in spin-valve Andreev molecules. Physical Review B 2023, 108. doi:10.1103/physrevb.108.174502
  • Jünger, C.; Lehmann, S.; Dick, K. A.; Thelander, C.; Schönenberger, C.; Baumgartner, A. Intermediate states in Andreev bound state fusion. Communications Physics 2023, 6. doi:10.1038/s42005-023-01273-2
  • Yao, H.; Cheng, C.-P.; Li, L.-L.; Guo, R.; Guo, Y.; Zhang, C. Superior thermoelectric properties through triangular triple quantum dots (TTQD) attached to one metallic and one superconducting lead. Nanoscale advances 2023, 5, 1199–1211. doi:10.1039/d2na00838f
  • Potts, H.; Aspegren, M.; Debbarma, R.; Lehmann, S.; Thelander, C. Large-bias spectroscopy of Yu-Shiba-Rusinov states in a double quantum dot. Nanotechnology 2023, 34, 135002. doi:10.1088/1361-6528/aca90e
  • Debbarma, R.; Aspegren, M.; Boström, F. V.; Lehmann, S.; Dick, K.; Thelander, C. Josephson current via spin and orbital states of a tunable double quantum dot. Physical Review B 2022, 106. doi:10.1103/physrevb.106.l180507
  • Majek, P.; Górski, G.; Domański, T.; Weymann, I. Hallmarks of Majorana mode leaking into a hybrid double quantum dot. Physical Review B 2022, 106. doi:10.1103/physrevb.106.155123
  • Spethmann, M.; Zhang, X.-P.; Klinovaja, J.; Loss, D. Coupled superconducting spin qubits with spin-orbit interaction. Physical Review B 2022, 106. doi:10.1103/physrevb.106.115411
  • Kornich, V.; Trauzettel, B. Andreev bound states in junctions formed by conventional and PT -symmetric non-Hermitian superconductors. Physical Review Research 2022, 4. doi:10.1103/physrevresearch.4.033201
  • Scherübl, Z.; Fülöp, G.; Gramich, J.; Pályi, A.; Schönenberger, C.; Nygård, J.; Csonka, S. From Cooper pair splitting to nonlocal spectroscopy of a Shiba state. Physical Review Research 2022, 4. doi:10.1103/physrevresearch.4.023143
  • Zhang, P.; Wu, H.; Chen, J.; Khan, S. A.; Krogstrup, P.; Pekker, D.; Frolov, S. M. Signatures of Andreev Blockade in a Double Quantum Dot Coupled to a Superconductor. Physical review letters 2022, 128, 046801. doi:10.1103/physrevlett.128.046801
  • Kanne, T.; Olsteins, D.; Marnauza, M.; Vekris, A.; Saldaña, J. C. E.; Lorić, S.; Schlosser, R. D.; Ross, D.; Csonka, S.; Grove-Rasmussen, K.; Nygård, J. Double Nanowires for Hybrid Quantum Devices. Advanced Functional Materials 2021, 32, 2107926. doi:10.1002/adfm.202107926
  • Kürtössy, O.; Scherübl, Z.; Fülöp, G.; Lukács, I. E.; Kanne, T.; Nygård, J.; Makk, P.; Csonka, S. Andreev Molecule in Parallel InAs Nanowires. Nano letters 2021, 21, 7929–7937. doi:10.1021/acs.nanolett.1c01956
  • Vekris, A.; Saldaña, J. C. E.; Kanne, T.; Marnauza, M.; Olsteins, D.; Fan, F.; Li, X.; Hvid-Olsen, T.; Qiu, X.; Xu, H.; Nygård, J.; Grove-Rasmussen, K. Josephson junctions in double nanowires bridged by in-situ deposited superconductors. Physical Review Research 2021, 3, 033240. doi:10.1103/physrevresearch.3.033240
  • Hays, M. Future Directions. Realizing an Andreev Spin Qubit; Springer International Publishing, 2021; pp 47–48. doi:10.1007/978-3-030-83879-9_5
  • Mélin, R. Ultralong-distance quantum correlations in three-terminal Josephson junctions. Physical Review B 2021, 104, 075402. doi:10.1103/physrevb.104.075402
  • Baran, B.; Taranko, R.; Domański, T. Subgap dynamics of double quantum dot coupled between superconducting and normal leads. Scientific reports 2021, 11, 11138. doi:10.1038/s41598-021-90080-2
  • Taranko, R.; Wrześniewski, K.; Baran, B.; Weymann, I.; Domański, T. Transient effects in a double quantum dot sandwiched laterally between superconducting and metallic leads. Physical Review B 2021, 103, 165430. doi:10.1103/physrevb.103.165430
  • Kanne, T.; Olsteins, D.; Marnauza, M.; Vekris, A.; Saldaña, J. C. E.; Lorić, S.; Schlosser, R. D.; Ross, D.; Csonka, S.; Grove-Rasmussen, K.; Nygård, J. Double nanowires for hybrid quantum devices. 2021.
Other Beilstein-Institut Open Science Activities