Wearable, stable, highly sensitive hydrogel–graphene strain sensors

Jian Lv, Chuncai Kong, Chao Yang, Lu Yin, Itthipon Jeerapan, Fangzhao Pu, Xiaojing Zhang, Sen Yang and Zhimao Yang
Beilstein J. Nanotechnol. 2019, 10, 475–480. https://doi.org/10.3762/bjnano.10.47

Supporting Information

Yield strain stress curve of the hydrogels; Cross-section SEM image of the graphene/hydrogel composite; Hysteresis curve for the graphene/WG-hydrogel strain sensor; Optical cross-section images of the graphene/WG-hydrogel composite before and after stretching.

Supporting Information File 1: Additional figures.
Format: PDF Size: 296.2 KB Download

Cite the Following Article

Wearable, stable, highly sensitive hydrogel–graphene strain sensors
Jian Lv, Chuncai Kong, Chao Yang, Lu Yin, Itthipon Jeerapan, Fangzhao Pu, Xiaojing Zhang, Sen Yang and Zhimao Yang
Beilstein J. Nanotechnol. 2019, 10, 475–480. https://doi.org/10.3762/bjnano.10.47

How to Cite

Lv, J.; Kong, C.; Yang, C.; Yin, L.; Jeerapan, I.; Pu, F.; Zhang, X.; Yang, S.; Yang, Z. Beilstein J. Nanotechnol. 2019, 10, 475–480. doi:10.3762/bjnano.10.47

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Li, N.; Yang, Y.; Murugesan, B.; Zhang, Y.; Chen, Z.; Yang, X.; Cai, Y. An oriented MXene/silk fibroin nanofiber hydrogel with high strength and strain response ability. New Journal of Chemistry 2024, 48, 4570–4579. doi:10.1039/d3nj04121b
  • Zhang, Y.; Zou, J.; Wang, S.; Hu, X.; Liu, Z.; Feng, P.; Jing, X.; Liu, Y. Tailoring nanostructured MXene to adjust its dispersibility in conductive hydrogel for self-powered sensors. Composites Part B: Engineering 2024, 272, 111191. doi:10.1016/j.compositesb.2024.111191
  • Reynolds, M.; Stoy, L. M.; Sun, J.; Opoku Amponsah, P. E.; Li, L.; Soto, M.; Song, S. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels. Gels (Basel, Switzerland) 2024, 10, 115. doi:10.3390/gels10020115
  • Li, Y.; Chen, C.; Cui, G.; Liu, L.; Zhou, C.; Wu, G. Hydroxyethyl cellulose-based stretchable, antifreeze, ion-conductive hydrogel sensor. European Polymer Journal 2024, 202, 112603. doi:10.1016/j.eurpolymj.2023.112603
  • Sentoukas, T.; Skandalis, A.; Pispas, S. doi:10.1002/9783527834266.ch6
  • Xu, Z.; Himura, Y.; Ishiguro, C.; Inoue, T.; Nishina, Y.; Kobayashi, Y. Improved performance of strain sensors constructed from highly crystalline graphene with nanospacer. Japanese Journal of Applied Physics 2023, 63, 15001–015001. doi:10.35848/1347-4065/ad0cdb
  • Yang, J.-Y.; Kumar, A.; Shaikh, M. O.; Huang, S.-H.; Chou, Y.-N.; Yang, C.-C.; Hsu, C.-K.; Kuo, L.-C.; Chuang, C.-H. Biocompatible, Antibacterial, and Stable Deep Eutectic Solvent-Based Ionic Gel Multimodal Sensors for Healthcare Applications. ACS applied materials & interfaces 2023, 15, 55244–55257. doi:10.1021/acsami.3c09613
  • Stocco, T. D.; Zhang, T.; Dimitrov, E.; Ghosh, A.; da Silva, A. M. H.; Melo, W. C. M. A.; Tsumura, W. G.; Silva, A. D. R.; Sousa, G. F.; Viana, B. C.; Terrones, M.; Lobo, A. O. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. International journal of nanomedicine 2023, 18, 6153–6183. doi:10.2147/ijn.s436867
  • Meng, L.; Ding, S.; Yan, Z.; Zhong, Z.; Li, W.; Liu, D.; Liu, E. Preparation and performance analysis of CNC/GO/CNTs/PVA/SA-Ca2+ conductive hydrogels. New Journal of Chemistry 2023, 47, 18905–18909. doi:10.1039/d3nj03884j
  • Yang, P.-A.; Cui, X.; Li, R.; Shou, M.; Gong, X.; Lee, C.-H.; Zhang, K. Highly Sensitive and Selective Multidirectional Flexible Strain Sensors With Cross-Shaped Structure Based on Fe NWs/Graphene/Interlock Knit Fabric for Human Activity Monitoring. IEEE Sensors Journal 2023, 23, 23440–23447. doi:10.1109/jsen.2023.3308715
  • Xiao, Y.; Wu, Y.; Si, P.; Zhang, D. Tough silk fibroin hydrogel via polypropylene glycol (PPG) blending for wearable sensors. Journal of Applied Polymer Science 2023, 140. doi:10.1002/app.54689
  • Zhang, C.; Wang, J.; Li, S.; Zou, X.; Yin, H.; Huang, Y.; Dong, F.; Li, P.; Song, Y. Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance. European Polymer Journal 2023, 186, 111827. doi:10.1016/j.eurpolymj.2023.111827
  • Qing, L.; Kumar, K.; Ren, H. Kinesthesia Sensorization of Foldable Designs Using Soft Sensors. Lecture Notes in Bioengineering; Springer Nature Singapore, 2023; pp 431–441. doi:10.1007/978-981-19-5932-5_16
  • Wang, H.; Liu, C.; Li, B.; Liu, J.; Shen, Y.; Zhang, M.; Ji, K.; Mao, X.; Sun, R.; Zhou, F. Advances in Carbon-Based Resistance Strain Sensors. ACS Applied Electronic Materials 2023, 5, 674–689. doi:10.1021/acsaelm.2c01375
  • Lv, J.; Thangavel, G.; Lee, P. S. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. Nanoscale 2023, 15, 434–449. doi:10.1039/d2nr04464a
  • Bhatt, R.; Shukla, P.; Mishra, A.; Bajpai, A. K. Emerging applications of nano-modified bio-fuel cells. Nanotechnology for Advanced Biofuels; Elsevier, 2023; pp 213–242. doi:10.1016/b978-0-323-91759-9.00002-2
  • Liu, R.; Liu, H.; Lyu, T.; Chen, K.; Wang, Z.; Tian, Y. Tri‐state recyclable multifunctional hydrogel for flexible sensors. Journal of Applied Polymer Science 2022, 139. doi:10.1002/app.52928
  • Liu, Z.; Wang, J.; Zhang, Q.; Li, Z.; Li, Z.; Cheng, L.; Dai, F. Electrospinning Silk Fibroin/Graphene Nanofiber Membrane Used for 3D Wearable Pressure Sensor. Polymers 2022, 14, 3875. doi:10.3390/polym14183875
  • Xu, S.; Zong, Y.; Ma, J.; Liu, L. A Multifunctional Skin‐Like Sensor Based on Liquid Metal Activated Gelatin Organohydrogel. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202201212
  • Cao, Q.; Shu, Z.; Zhang, T.; Ji, W.; Chen, J.; Wei, Y. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Biomacromolecules 2022, 23, 2603–2613. doi:10.1021/acs.biomac.2c00329
Other Beilstein-Institut Open Science Activities