Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

Boris N. Khlebtsov, Andrey M. Burov, Timofey E. Pylaev and Nikolai G. Khlebtsov
Beilstein J. Nanotechnol. 2019, 10, 794–803. https://doi.org/10.3762/bjnano.10.79

Supporting Information

S1. Calculation of the AuNR concentration; S2. Calibration curve for determination of rhodamine 123 concentration; S3. Dynamic light scattering study of nanocomposites at different pH values.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 340.8 KB Download

Cite the Following Article

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy
Boris N. Khlebtsov, Andrey M. Burov, Timofey E. Pylaev and Nikolai G. Khlebtsov
Beilstein J. Nanotechnol. 2019, 10, 794–803. https://doi.org/10.3762/bjnano.10.79

How to Cite

Khlebtsov, B. N.; Burov, A. M.; Pylaev, T. E.; Khlebtsov, N. G. Beilstein J. Nanotechnol. 2019, 10, 794–803. doi:10.3762/bjnano.10.79

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 403.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Orangi, S.; Delavari H., H.; Davaran, S.; Poursalehi, R.; Ranjbar, M. Targeted theranostics agent based on polydopamine/hyaluronic acid nanoparticles for MRI and photothermal therapy. Polymers for Advanced Technologies 2023, 35. doi:10.1002/pat.6253
  • Xu, H.; Zhang, Y.; Zhang, H.; Zhang, Y.; Xu, Q.; Lu, J.; Feng, S.; Luo, X.; Wang, S.; Zhao, Q. Smart polydopamine-based nanoplatforms for biomedical applications: state-of-art and further perspectives. Coordination Chemistry Reviews 2023, 488, 215153. doi:10.1016/j.ccr.2023.215153
  • Chiang, M.-R.; Shen, W.-T.; Huang, P.-X.; Wang, K.-L.; Weng, W.-H.; Chang, C.-W.; Chiang, W.-H.; Liu, Y.-C.; Chang, S.-J.; Hu, S.-H. Programmed T cells infiltration into lung metastases with harnessing dendritic cells in cancer immunotherapies by catalytic antigen-capture sponges. Journal of controlled release : official journal of the Controlled Release Society 2023, 360, 260–273. doi:10.1016/j.jconrel.2023.06.033
  • Aguilar‐Ferrer, D.; Vasileiadis, T.; Iatsunskyi, I.; Ziółek, M.; Żebrowska, K.; Ivashchenko, O.; Błaszkiewicz, P.; Grześkowiak, B.; Pazos, R.; Moya, S.; Bechelany, M.; Coy, E. Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods. Advanced Functional Materials 2023, 33. doi:10.1002/adfm.202304208
  • Alipanah-Poor, K.; Sheervalilou, R.; Irajirad, R.; Sarikhani, A.; Tavangari, Z.; Alamzadeh, Z.; Ghaznavi, H.; Khoei, S. Physico-chemical and MR relaxometry study of bovine serum albumin-coated magneto-plasmonic nanoparticles designed for potential use in cancer nanotheranostics. Magnetic resonance imaging 2023, 103, 208–215. doi:10.1016/j.mri.2023.06.013
  • Acter, S.; Moreau, M.; Ivkov, R.; Viswanathan, A.; Ngwa, W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. Nanomaterials (Basel, Switzerland) 2023, 13, 1656. doi:10.3390/nano13101656
  • Indhu, A. R.; Keerthana, L.; Dharmalingam, G. Plasmonic nanotechnology for photothermal applications - an evaluation. Beilstein journal of nanotechnology 2023, 14, 380–419. doi:10.3762/bjnano.14.33
  • Krishna, R. H.; Chandraprabha, M. N.; Monika, P.; Br, T.; Chaudhary, V.; Manjunatha, C. Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review. Biotechnology & genetic engineering reviews 2022, 1–42. doi:10.1080/02648725.2022.2147678
  • Khurana, D.; Vikas; Shaw, A. K.; Soni, S. Polydopamine coated gold nano blackbodies for tumor-selective spatial thermal damage during plasmonic photothermal cancer therapy. IEEE transactions on nanobioscience 2022, 21, 1. doi:10.1109/tnb.2021.3118895
  • Khurana, D.; Dudi, R.; Shukla, S. K.; Singh, D.; Mondhe, D. M.; Soni, S. Gold nanoblackbodies mediated plasmonic photothermal cancer therapy for melanoma. Nanomedicine (London, England) 2022, 17, 1323–1338. doi:10.2217/nnm-2022-0052
  • Oliveira, B. B.; Ferreira, D.; Fernandes, A. R.; Baptista, P. V. Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2022, 15, e1836. doi:10.1002/wnan.1836
  • Zhou, B.; Guo, X.; Yang, N.; Huang, Z.; Huang, L.; Fang, Z.; Zhang, C.; Li, L.; Yu, C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. Journal of materials chemistry. B 2021, 9, 5583–5598. doi:10.1039/d1tb00181g
  • Basinska, T.; Gadzinowski, M.; Mickiewicz, D.; Slomkowski, S. Functionalized Particles Designed for Targeted Delivery. Polymers 2021, 13, 2022. doi:10.3390/polym13122022
  • Zhou, L.; Zhou, X.; Zhao, C.; Liu, Y.; Li, Y.; Ma, L.; He, Y.; Jiang, Y.; Gao, J. N-doped porous molybdenum carbide nanoflowers: A novel sensing platform for organophosphorus pesticides detecting. Microchemical Journal 2021, 165, 106169. doi:10.1016/j.microc.2021.106169
  • Cavigli, L.; Khlebtsov, B. N.; Centi, S.; Pini, R.; Khlebtsov, N. G.; Ratto, F. Cross-checking the effect of roughness on the stability of photoacoustic conversion from gold nanorods. In Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine, SPIE, 2021; pp 1184504 ff. doi:10.1117/12.2590693
  • Xu, J.; Cheng, X.; Chen, F.; Li, W.; Xiao, X.; Lai, P.; Xu, G.; Xu, L.; Pan, Y. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy. Journal of Materials Science & Technology 2021, 63, 97–105. doi:10.1016/j.jmst.2020.04.060
  • Cavigli, L.; Khlebtsov, B. N.; Centi, S.; Khlebtsov, N. G.; Pini, R.; Ratto, F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. Nanomaterials (Basel, Switzerland) 2021, 11, 116. doi:10.3390/nano11010116
  • Das, P.; Mudigunda, S. V.; Darabdhara, G.; Boruah, P. K.; Ghar, S.; Rengan, A. K.; Das, M. R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. Journal of photochemistry and photobiology. B, Biology 2020, 212, 112028. doi:10.1016/j.jphotobiol.2020.112028
  • Choi, H.-S.; Cho, S. H.; Hahn, S. K. Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS nano 2020, 14, 6683–6692. doi:10.1021/acsnano.9b09726
  • Jin, A.; Wang, Y.; Lin, K.; Jiang, L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioactive materials 2020, 5, 522–541. doi:10.1016/j.bioactmat.2020.04.003
Other Beilstein-Institut Open Science Activities