Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

Bagher Aslibeiki, Parviz Kameli, Hadi Salamati, Giorgio Concas, Maria Salvador Fernandez, Alessandro Talone, Giuseppe Muscas and Davide Peddis
Beilstein J. Nanotechnol. 2019, 10, 856–865. https://doi.org/10.3762/bjnano.10.86

Supporting Information

An example of a typical X-ray diffraction pattern of the amorphous phase obtained immediately after the milling process for sample C0 (Figure S1). ZFC and FC curves measured for all samples are shown in Figure S2. For sample C0, the AC susceptibility vs temperature curves measured at different frequencies are shown in Figure S3. Figure S4 presents the fits of the frequency dependence of the maximum of the curves (TP) using the Arrhenius model, the Vogel–Fulcher law and the power law. Only the last two models provide physically meaningful parameters and are reported in Table S1.

Supporting Information File 1: Additional experimental results.
Format: PDF Size: 610.3 KB Download

Cite the Following Article

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions
Bagher Aslibeiki, Parviz Kameli, Hadi Salamati, Giorgio Concas, Maria Salvador Fernandez, Alessandro Talone, Giuseppe Muscas and Davide Peddis
Beilstein J. Nanotechnol. 2019, 10, 856–865. https://doi.org/10.3762/bjnano.10.86

How to Cite

Aslibeiki, B.; Kameli, P.; Salamati, H.; Concas, G.; Salvador Fernandez, M.; Talone, A.; Muscas, G.; Peddis, D. Beilstein J. Nanotechnol. 2019, 10, 856–865. doi:10.3762/bjnano.10.86

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 885.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Simon, G.; Costanzo, S.; Lisiecki, I.; Colomban, P. Multiscale identification of the inorganic shell of core (Co)/shell‐assembled nanoparticles. Journal of Raman Spectroscopy 2024. doi:10.1002/jrs.6668
  • Modabberasl, A.; Jaberolansar, E.; Kameli, P.; Nikmanesh, H. Hydrothermal as a synthesis method for characterization of structural, morphological and magnetic properties of Co–Al ferrite nanoparticles. Materials Chemistry and Physics 2024, 314, 128832. doi:10.1016/j.matchemphys.2023.128832
  • Hussein, H.; Ibrahim, S. S.; Sherif, S. A. Synthesis and Investigation of Deep Structural Insights into Eco-Friendly Cofe2o4 Nanoparticles by Rietveld Refinement for Cytotoxicity Applications. Elsevier BV 2024. doi:10.2139/ssrn.4672925
  • Anwar, A.; Akther, U. S.; Maria, K. H.; Alam, M. K.; Kumar, A.; Khan, M. N. I. Regulated Ni–Zn–Co ferrites: structural, electrical and magnetic properties tailored by co doping. Journal of Materials Science: Materials in Electronics 2023, 35. doi:10.1007/s10854-023-11748-1
  • Spivakov, A. A.; Huang, L.-H.; Chen, Y.-Z.; Lin, C.-R. Facile Synthesis of Chromium-Doped Fe1.1Mn1.9O4 Nanoparticles and the Effect of Cr Content on Their Magnetic and Structural Properties. Nanomaterials (Basel, Switzerland) 2023, 13, 2203. doi:10.3390/nano13152203
  • Sonia, L.; Ningombam, G. S.; Phanjoubam, S. Electron spin resonance and induction heating studies of zinc substituted (Mn, Co) ferrite nanoparticles for potential magnetic hyperthermia applications. Journal of Alloys and Compounds 2023, 946, 169327. doi:10.1016/j.jallcom.2023.169327
  • Anila, I.; Lahiri, B.; John, S. P.; Jacob Mathew, M.; Philip, J. Preparation, physicochemical characterization, and AC induction heating properties of colloidal aggregates of ferrimagnetic cobalt ferrite nanoparticles coated with a bio-compatible polymer. Ceramics International 2023, 49, 15183–15199. doi:10.1016/j.ceramint.2023.01.101
  • Apostolova, I. N.; Apostolov, A. T.; Wesselinowa, J. M. Magnetization, Band Gap and Specific Heat of Pure and Ion Doped MnFe2O4 Nanoparticles. Magnetochemistry 2023, 9, 76. doi:10.3390/magnetochemistry9030076
  • Delgado, Á.; Gallo-Córdova, Á.; Díaz-Ufano, C.; Martín, E.; Blanco-Gutiérrez, V.; Morales, M. P.; Torralvo, M. J.; Sáez, R. Insights into the Magnetic Properties of Single-Core and Multicore Magnetite and Manganese-Doped Magnetite Nanoparticles. The Journal of Physical Chemistry C 2023, 127, 4714–4723. doi:10.1021/acs.jpcc.2c08269
  • Shen, C.; Zhao, Y.; Ji, X.; Dong, S.; Zheng, H.; Hu, J.; Zheng, L. Microstructure and electromagnetic properties of low-temperature sintered NiCuZn ferrite by co-doped Bi2O3 and Co2O3. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-022-09559-x
  • Chowdhury, M. S.; Rösch, E. L.; Esteban, D. A.; Janssen, K.-J.; Wolgast, F.; Ludwig, F.; Schilling, M.; Bals, S.; Viereck, T.; Lak, A. Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity. Nano letters 2022, 23, 58–65. doi:10.1021/acs.nanolett.2c03568
  • Chan, M.-H.; Li, C.-H.; Chang, Y.-C.; Hsiao, M. Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery. Pharmaceutics 2022, 14, 2584. doi:10.3390/pharmaceutics14122584
  • Agrawal, N.; Sarkar, M.; Dhruv, D. K.; Nagar, P. Electrical transport and magnetic properties of semiconducting In0.95Co0.05Sb thin film. Journal of Materials Science: Materials in Electronics 2022, 33, 24068–24077. doi:10.1007/s10854-022-09362-8
  • Nadeem, K.; Kamran, M.; Khokhar, H.; Ahmed, I.; Zeb, F.; Noshahi, N. Effect of Mg doping on magnetic, and dielectric properties of NiCr2O4 nanoparticles. Ceramics International 2022, 48, 17270–17278. doi:10.1016/j.ceramint.2022.02.288
  • Kavkhani, R.; Hajalilou, A.; Abouzari-Lotf, E.; Ferreira, L. P.; Cruz, M. M.; Yusefi, M.; Parvini, E.; Ogholbeyg, A. B.; Ismail, U. N. CTAB assisted synthesis of MnFe2O4@ SiO2 nanoparticles for magnetic hyperthermia and MRI application. Materials Today Communications 2022, 31, 103412. doi:10.1016/j.mtcomm.2022.103412
  • Safari, M.; Naseri, M.; Naderi, E.; Esmaeili, E. Magnetically targeted delivery of Quercetin-loaded Ca1–xMnxFe2O4 nanocarriers: synthesis, characterization and in vitro study on HEK 293-T and MCF-7 cell lines. Applied Physics A 2022, 128. doi:10.1007/s00339-022-05612-y
  • Tancredi, P.; Rivas-Rojas, P. C.; Moscoso-Londoño, O.; Muraca, D.; Knobel, M.; Socolovsky, L. M. Size and doping effects on the improvement of the low-temperature magnetic properties of magnetically aligned cobalt ferrite nanoparticles. Journal of Alloys and Compounds 2022, 894, 162432. doi:10.1016/j.jallcom.2021.162432
  • S.Mahmood, H.; Mubarak, T. H.; Ridha, S. M. A.; Al-Zanganawee, J. Effect of zinc substitution in magnetite structure on heat efficiency for hyperthermia: Investigation in superparamagnetic properties. In 3RD INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2021), AIP Publishing, 2022. doi:10.1063/5.0067195
  • Matseke, M. S.; Zheng, H.; Mathe, M.; Carleschi, E.; Doyle, B. P. Influence of Co doping on physiochemical properties of MnFe2O4/C nano compounds toward oxygen reduction reaction. Journal of Alloys and Compounds 2021, 888, 161581. doi:10.1016/j.jallcom.2021.161581
  • Mahdikhah, V.; Ataie, A.; Akbari Moayyer, H.; Molaei, M. J.; Babaei, A. Magnetic and photocatalytic properties of CoFe2O4/Ni nanocomposites. Journal of Electroceramics 2021, 48, 51–66. doi:10.1007/s10832-021-00271-6
Other Beilstein-Institut Open Science Activities