Cite the Following Article
Influence of the magnetic nanoparticle coating on the magnetic relaxation time
Mihaela Osaci and Matteo Cacciola
Beilstein J. Nanotechnol. 2020, 11, 1207–1216.
https://doi.org/10.3762/bjnano.11.105
How to Cite
Osaci, M.; Cacciola, M. Beilstein J. Nanotechnol. 2020, 11, 1207–1216. doi:10.3762/bjnano.11.105
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 697.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Aiswarya Gowri, V.; Enoch, K.; Pati, S. S.; Somasundaram, A. A. Improved stability and hyperthermia efficiency of PEG-coated magnetite nanoparticles. Results in Surfaces and Interfaces 2025, 21, 100652. doi:10.1016/j.rsurfi.2025.100652
- Rafat, M. T. Interpretable AI in Tissue Engineering: XGBoost and SHAP for PLGA Scaffold Biocompatibility. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.11.21.624734
- Pang, A. S.-R.; Liau, Z. Q. G.; Oh, J. Y.-L.; Srinivasan, D. K. Nanotechnology-Enhanced Orthopaedic Surgery. Journal of Nanotheranostics 2024, 5, 167–187. doi:10.3390/jnt5040011
- Nnadozie, E. C.; Ogunwa, K. I.; Chukwuike, V. I.; Nnadozie, O. O.; Ehikhase, C. Synthesis and Characterization of Carbonaceous Materials for Medical Applications: A Comprehensive Review. BioMed 2024, 4, 464–492. doi:10.3390/biomed4040036
- Khan, F.; Lahiri, B.; Srujana, M.; Vidya, R.; Philip, J. Induction heating of magnetic nanoparticles: role of thermo-physical properties of the coating moieties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 692, 133982. doi:10.1016/j.colsurfa.2024.133982
- Koshev, N.; Kapralov, P.; Evstigneeva, S.; Leontyev, A.; Lutsenko, O.; Zharkov, M.; Pyataev, N.; Darwish, A.; Timin, A.; Ostras, M.; Radchenko, I.; Sukhorukov, G.; Vetoshko, P. YIG-Based Sensor System for Millisecond Time Range Magnetorelaxometry. IEEE transactions on bio-medical engineering 2024, 71, 1640–1650. doi:10.1109/tbme.2023.3346203
- Van Khien, N.; Thi Anh Xuan, C.; Nguyen, L. H.; Nam, P. H.; Thi Thao, T. Role of citric acid coating in enhancing applicability of CoFe2O4 nanoparticles in antibacterial and hyperthermia. Materials Today Communications 2024, 38, 107982. doi:10.1016/j.mtcomm.2023.107982
- Sadeghzadeh, H.; Dianat-Moghadam, H.; Del Bakhshayesh, A. R.; Mohammadnejad, D.; Mehdipour, A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem cell research & therapy 2023, 14, 194. doi:10.1186/s13287-023-03426-0
- Osaci, M.; Cacciola, M. A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model. Multiscale and Multidisciplinary Modeling, Experiments and Design 2023, 7, 15–29. doi:10.1007/s41939-023-00174-9
- Osaci, M.; Cacciola, M. Understanding the Effect of Magnetic Field and Nanoparticle Concentration on Brownian Relaxation Time in Magnetic Nanofluids: A Semi-Analytical Model. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-2625923/v1
- Pathania, K.; Sah, S. P.; Salunke, D. B.; Jain, M.; Yadav, A. K.; Yadav, V. G.; Pawar, S. V. Green synthesis of lignin-based nanoparticles as a bio-carrier for targeted delivery in cancer therapy. International journal of biological macromolecules 2023, 229, 684–695. doi:10.1016/j.ijbiomac.2022.12.323
- Hadi, H.; Safari, R.; Shamlouei, H. R. Impact of calcination temperature on the spin–spin relaxation time (T2) of MgFe2O4 nanoparticles (in vitro). Canadian Journal of Chemistry 2022, 100, 891–899. doi:10.1139/cjc-2022-0105
- Torres, W.; Alcantara, A.; Bini, R.; Alvim, M.; Santos, M.; Cótica, L.; Rocco, D. Top-down and bottom-up approaches to obtain magnetic nanoparticle of Fe3O4 compound: Pulsed laser deposition and chemical route. Materials Chemistry and Physics 2022, 290, 126511. doi:10.1016/j.matchemphys.2022.126511
- Bai, T.; Liu, X. Effect of magnetic field on the tribological performance of waterborne polyurethane coatings with magnetized graphene oxide. Progress in Organic Coatings 2022, 167, 106839. doi:10.1016/j.porgcoat.2022.106839
- Eslami, P.; Albino, M.; Scavone, F.; Chiellini, F.; Morelli, A.; Baldi, G.; Cappiello, L.; Doumett, S.; Lorenzi, G.; Ravagli, C.; Caneschi, A.; Laurenzana, A.; Sangregorio, C. Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. Nanomaterials (Basel, Switzerland) 2022, 12, 303. doi:10.3390/nano12030303
- Vilas-Boas, V.; Carvalho, F.; Espiña, B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules (Basel, Switzerland) 2020, 25, 2874. doi:10.3390/molecules25122874