Supporting Information
| Supporting Information File 1: Referenced images and a supporting discussion of the probe particle simulations. | ||
| Format: PDF | Size: 3.0 MB | Download |
Cite the Following Article
Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy
Jeremiah Croshaw, Thomas Dienel, Taleana Huff and Robert Wolkow
Beilstein J. Nanotechnol. 2020, 11, 1346–1360.
https://doi.org/10.3762/bjnano.11.119
How to Cite
Croshaw, J.; Dienel, T.; Huff, T.; Wolkow, R. Beilstein J. Nanotechnol. 2020, 11, 1346–1360. doi:10.3762/bjnano.11.119
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.7 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Onoda, J.; Livadaru, L.; Wolkow, R. A.; Pitters, J. Electronic Control of Silicon Surface Atomic Structures with Two-Probe Scanning Tunneling Microscopy. ACS nano 2025, 19, 29087–29095. doi:10.1021/acsnano.4c18016
- Ng, S. S. H.; Walter, M.; Drewniok, J.; Hofmann, S.; Wille, R.; Walus, K. Building a Machine Learning Accelerator with Silicon Dangling Bonds: From Verilog to Quantum Dot Layout. In 2025 IEEE 25th International Conference on Nanotechnology (NANO), IEEE, 2025; pp 483–488. doi:10.1109/nano63165.2025.11113747
- Drewniok, J.; Walter, M.; Wille, R. QuickTrace: An Efficient Contour Tracing Algorithm for Defect Robustness Simulation of Silicon Dangling Bond Logic. In 2025 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2025; pp 1–5. doi:10.1109/iscas56072.2025.11044082
- Sung, Y.; Oberg, L.; Griffin, R.; Schenk, A. K.; Chandler, H.; Gallo, S. C.; Stacey, A.; Sergeieva, T.; Doherty, M. W.; Weber, C.; Pakes, C. I. Identification of Defects and the Origins of Surface Noise on Hydrogen–Terminated (100) Diamond. Advanced Materials Interfaces 2024, 12. doi:10.1002/admi.202400695
- Drewniok, J.; Walter, M.; Hang Ng, S. S.; Walus, K.; Wille, R. On-the-fly Defect-Aware Design of Circuits based on Silicon Dangling Bond Logic. In 2024 IEEE 24th International Conference on Nanotechnology (NANO), IEEE, 2024; pp 30–35. doi:10.1109/nano61778.2024.10628962
- Walter, M.; Croshaw, J.; Hang Ng, S. S.; Walus, K.; Wolkow, R.; Wille, R. Towards Atomic Defect-Aware Physical Design of Silicon Dangling Bond Logic on the H -Si $(100)-2\times 1$ Surface. In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2024; pp 1–2. doi:10.23919/date58400.2024.10546683
- Pitters, J.; Croshaw, J.; Achal, R.; Livadaru, L.; Ng, S.; Lupoiu, R.; Chutora, T.; Huff, T.; Walus, K.; Wolkow, R. A. Atomically Precise Manufacturing of Silicon Electronics. ACS nano 2024, 18, 6766–6816. doi:10.1021/acsnano.3c10412
- Walter, M.; Drewniok, J.; Ng, S. S. H.; Walus, K.; Wille, R. Reducing the Complexity of Operational Domain Computation in Silicon Dangling Bond Logic. In Proceedings of the 18th ACM International Symposium on Nanoscale Architectures, ACM, 2023; pp 1–6. doi:10.1145/3611315.3633246
- Shaterzadeh-Yazdi, Z.; Kazemikhah, P. Multiple silicon dangling-bond charge qubits for quantum computing: a Hilbert-space analysis of the Hamiltonian. Physica Scripta 2023, 98, 85101–085101. doi:10.1088/1402-4896/ace0e2
- Gordon, O. doi:10.1002/9783527834044.ch45
- Ziatdinov, M.; Ghosh, A.; Wong, C. Y.; Kalinin, S. V. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nature Machine Intelligence 2022, 4, 1101–1112. doi:10.1038/s42256-022-00555-8
- Ranawat, Y. S.; Jaques, Y. M.; Foster, A. S. Generalised deep-learning workflow for the prediction of hydration layers over surfaces. Journal of Molecular Liquids 2022, 367, 120571. doi:10.1016/j.molliq.2022.120571
- Wyrick, J.; Wang, X.; Namboodiri, P.; Kashid, R. V.; Fei, F.; Fox, J.; Silver, R. Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT. ACS nano 2022, 16, 19114–19123. doi:10.1021/acsnano.2c08162
- Inagaki, K.; Morikawa, Y.; Ohmi, H.; Yasutake, K.; Kakiuchi, H. Diffusion of excessively adsorbed hydrogen atoms on hydrogen terminated Si(100)(2×1) surface. AIP Advances 2021, 11, 085318. doi:10.1063/5.0058525
- Ranawat, Y. S.; Jaques, Y. M.; Foster, A. S. Predicting hydration layers on surfaces using deep learning. Nanoscale advances 2021, 3, 3447–3453. doi:10.1039/d1na00253h
- Šebera, J.; Zemen, J.; Jirásek, V.; Holovský, J.; Sychrovský, V. FTIR Measurement of the Hydrogenated Si(100) Surface: The Structure-Vibrational Interpretation by Means of Periodic DFT Calculation. The Journal of Physical Chemistry C 2021, 125, 9219–9228. doi:10.1021/acs.jpcc.0c11176
- Zuzak, R.; Szymonski, M.; Godlewski, S. Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface. Beilstein journal of nanotechnology 2021, 12, 232–241. doi:10.3762/bjnano.12.19
- Croshaw, J.; Huff, T.; Rashidi, M.; Wood, J. A.; Lloyd, E.; Pitters, J. L.; Wolkow, R. A. Ionic charge distributions in silicon atomic surface wires. Nanoscale 2021, 13, 3237–3245. doi:10.1039/d0nr08295c
- Pavlova, T. V. Hydrogen inserted into the Si(100)-2 × 1-H surface: a first-principles study. Physical chemistry chemical physics : PCCP 2020, 22, 21851–21857. doi:10.1039/d0cp03691a
- Rashidi, M.; Croshaw, J.; Mastel, K.; Tamura, M.; Hosseinzadeh, H.; Wolkow, R. A. Deep learning-guided surface characterization for autonomous hydrogen lithography. Machine Learning: Science and Technology 2020, 1, 025001. doi:10.1088/2632-2153/ab6d5e