Cite the Following Article
Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action
Matías Guerrero Correa, Fernanda B. Martínez, Cristian Patiño Vidal, Camilo Streitt, Juan Escrig and Carol Lopez de Dicastillo
Beilstein J. Nanotechnol. 2020, 11, 1450–1469.
https://doi.org/10.3762/bjnano.11.129
How to Cite
Guerrero Correa, M.; Martínez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Beilstein J. Nanotechnol. 2020, 11, 1450–1469. doi:10.3762/bjnano.11.129
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 10.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yordanova, L.; Simeonova, L.; Metodiev, M.; Bachvarova-Nedelcheva, A.; Kostova, Y.; Atanasova-Vladimirova, S.; Nenova, E.; Ivanova, I.; Yocheva, L.; Pavlova, E. Antimicrobial, Oxidant, Cytotoxic, and Eco-Safety Properties of Sol–Gel-Prepared Silica–Copper Nanocomposite Materials. Pharmaceuticals 2025, 18, 976. doi:10.3390/ph18070976
- Niu, B.; Qiao, S.; Sun, Y.; Niu, Y. Enhancing dispersion stability of nano zinc oxide with rhamnolipids and evaluating antibacterial activity against harmful corn fungi. Frontiers in Microbiology 2025, 16. doi:10.3389/fmicb.2025.1527473
- Ahari, H.; Jafari, A.; Ozdal, T.; Moradi, S.; Bahari, H.-R.; Wu, Q.; Eş, I.; Mousavi Khaneghah, A. Recent innovations in metal-based nanoparticles for food packaging: A focus on safety and environmental impact. Applied Food Research 2025, 5, 100860. doi:10.1016/j.afres.2025.100860
- Mondal, S.; Gautam, M.; Das, R.; Maddela, N. R.; Prasad, R. Sustainable antimicrobial and antioxidant packaging: Environmental implications and solutions. Food Bioscience 2025, 68, 106347. doi:10.1016/j.fbio.2025.106347
- Li, D.; Xue, R. Nanostructured materials for smart food packaging: Integrating preservation and antimicrobial properties. Alexandria Engineering Journal 2025, 124, 446–461. doi:10.1016/j.aej.2025.04.002
- Jacinto, C.; Javed, Y.; Lavorato, G.; Tarraga, W. A.; Conde, B. I. C.; Orozco, J. M.; Picco, A. S.; Garcia, J.; Dias, C. S. B.; Malik, S.; Sharma, S. K. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. Nanoscale advances 2025, 7, 2818–2886. doi:10.1039/d5na00195a
- Shakerinasab, E.; Ferraris, S.; Perero, S.; Maculotti, G.; Galetto, M.; Luganini, A.; Perin, M.; Mussano, F.; Sohbatzadeh, F.; Spriano, S. A biocompatible SiO2/ZnO coating with enhanced antibiofilm properties for dental applications. Applied Surface Science 2025, 690, 162590. doi:10.1016/j.apsusc.2025.162590
- Lithi, I. J.; Ahmed Nakib, K. I.; Chowdhury, A. M. S.; Sahadat Hossain, M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co3O4, and TiO2) nanoparticles using plant extracts for developing antimicrobial properties. Nanoscale advances 2025, 7, 2446–2473. doi:10.1039/d5na00037h
- Sadeeq, M.; Li, Y.; Wang, C.; Hou, F.; Zuo, J.; Xiong, P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Frontiers in cellular and infection microbiology 2025, 15, 1528583. doi:10.3389/fcimb.2025.1528583
- Tarannum, N.; Pooja, K.; Singh, A.; Jain, P.; Raghav, S.; Lahari, V. "The evolution of antimicrobial fabrics: Nanoparticles as key agents in textiles innovation". Journal of Industrial Textiles 2025, 55. doi:10.1177/15280837251322535
- Hemalin Subala, R.; Henry Raja, D.; Davidson, D. J.; Amalanathan, M.; Shiney Manoj, D.; Dahlous, K. A.; Mohammad, S.; Sony Michael Mary, M. Preparation of voltage varying titaniumdioxide nanotubes and investigation of its antimicrobial activity. Spectroscopy Letters 2025, 1–14. doi:10.1080/00387010.2025.2486180
- Alshammari, Y.; Elkork, N.; Moussa, L.; Esmaeil, F.; Saeed, M.; Alsarraf, M.; Alfarhan, A.; Alrashidi, M. A.; Bolzoni, L. Systematic review of metal-based alloys with autogenous antibacterial capability. Critical Reviews in Solid State and Materials Sciences 2025, 50, 466–513. doi:10.1080/10408436.2025.2483676
- Nastulyavichus, A.; Tolordava, E.; Ulturgasheva, E.; Shelygina, S.; Babina, S.; Saraeva, I.; Kudryashov, S. Study of Laser Transfer Regimes to Increase the Efficiency of Application of Antibacterial Silver Nanoparticles. Bulletin of the Lebedev Physics Institute 2025, 52, 82–87. doi:10.3103/s1068335624602462
- Dejene, B. K. Eco-friendly synthesis of metallic nanoparticles from agri-food waste extracts: Applications in food packaging and healthcare–A critical review. Materials Today Chemistry 2025, 45, 102619. doi:10.1016/j.mtchem.2025.102619
- Chia, J. C.; Lai, C. W.; Juan, J. C.; Kong, E. D. H.; Teoh, M. W. Q.; Kumar, A.; Sharma, G.; Badruddin, I. A. Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity. Journal of Water Process Engineering 2025, 72, 107541. doi:10.1016/j.jwpe.2025.107541
- García, P. R.; López, E. C. A.; Romano, J. E. P.; Luna Domínguez, J. H.; Marín, N. P.; Zumarán, A. M.; Montero, I. D. A.; Salas Orozco, M. F. Antimicrobial Activity of Gels Supplemented With Nanoparticles as Intracanal Medication in Endodontics: A Systematic Review and Meta‐Analysis of In Vitro, In Vivo, and RCT Studies. Journal of Nanotechnology 2025, 2025. doi:10.1155/jnt/8412675
- Dogheim, G. M.; Alazhary, N. N.; Elbadry, O. A.; Amralla, M. T. Biosynthesized Silver Nanoparticles as an Environmental-Friendly Antibacterial Nanosystem against Methicillin-resistant Staphylococcus Aureus. Inorganic Chemistry Communications 2025, 173, 113809. doi:10.1016/j.inoche.2024.113809
- Kim, K. W.; Oh, G.-W.; Ko, S.-C.; Kim, J.-Y.; Kim, C. H.; Kwon, Y. M.; Yim, M.-J.; Yoon, M.; Lee, D.-S. Light-enhanced antibacterial carbon dot nanocomposite synthesized using Sargassum horneri and inorganic precursors. Fisheries and Aquatic Sciences 2025, 28, 107–119. doi:10.47853/fas.2025.e11
- Quilaqueo, S.; Bruna, J. E.; Galotto, M. J.; Guarda, A.; Rodríguez‐Mercado, F. J. Development of an antimicrobial material made of graphene oxide, polylactic acid/polyhydroxybutyrate, and CuO nanoparticles and its reprocessing effect on its properties. Polymer Composites 2025. doi:10.1002/pc.29628
- Andrada Suarez, E. E.; Roca Jalil, M. E.; Fernandez Baldo, M. A.; Cuozzo, S. A. Nanobiotechnology approaches for the remediation of persistent and emerging organic pollutants: strategies, interactions, and effectiveness. Environmental Science: Nano 2025, 12, 979–1011. doi:10.1039/d4en00424h