Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

Matías Guerrero Correa, Fernanda B. Martínez, Cristian Patiño Vidal, Camilo Streitt, Juan Escrig and Carol Lopez de Dicastillo
Beilstein J. Nanotechnol. 2020, 11, 1450–1469. https://doi.org/10.3762/bjnano.11.129

Cite the Following Article

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action
Matías Guerrero Correa, Fernanda B. Martínez, Cristian Patiño Vidal, Camilo Streitt, Juan Escrig and Carol Lopez de Dicastillo
Beilstein J. Nanotechnol. 2020, 11, 1450–1469. https://doi.org/10.3762/bjnano.11.129

How to Cite

Guerrero Correa, M.; Martínez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Beilstein J. Nanotechnol. 2020, 11, 1450–1469. doi:10.3762/bjnano.11.129

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Alshammari, Y.; Elkork, N.; Moussa, L.; Esmaeil, F.; Saeed, M.; Alsarraf, M.; Alfarhan, A.; Alrashidi, M. A.; Bolzoni, L. Systematic review of metal-based alloys with autogenous antibacterial capability. Critical Reviews in Solid State and Materials Sciences 2025, 1–48. doi:10.1080/10408436.2025.2483676
  • Nastulyavichus, A.; Tolordava, E.; Ulturgasheva, E.; Shelygina, S.; Babina, S.; Saraeva, I.; Kudryashov, S. Study of Laser Transfer Regimes to Increase the Efficiency of Application of Antibacterial Silver Nanoparticles. Bulletin of the Lebedev Physics Institute 2025, 52, 82–87. doi:10.3103/s1068335624602462
  • Dejene, B. K. Eco-friendly synthesis of metallic nanoparticles from agri-food waste extracts: Applications in food packaging and healthcare–A critical review. Materials Today Chemistry 2025, 45, 102619. doi:10.1016/j.mtchem.2025.102619
  • Chia, J. C.; Lai, C. W.; Juan, J. C.; Kong, E. D. H.; Teoh, M. W. Q.; Kumar, A.; Sharma, G.; Badruddin, I. A. Recent development of copper, silver and their bimetallic nanoparticles: Next-generation antibacterial agents through photocatalysis activity. Journal of Water Process Engineering 2025, 72, 107541. doi:10.1016/j.jwpe.2025.107541
  • García, P. R.; López, E. C. A.; Romano, J. E. P.; Luna Domínguez, J. H.; Marín, N. P.; Zumarán, A. M.; Montero, I. D. A.; Salas Orozco, M. F. Antimicrobial Activity of Gels Supplemented With Nanoparticles as Intracanal Medication in Endodontics: A Systematic Review and Meta‐Analysis of In Vitro, In Vivo, and RCT Studies. Journal of Nanotechnology 2025, 2025. doi:10.1155/jnt/8412675
  • Mondal, S.; Gautam, M.; Das, R.; Maddela, N. R.; Prasad, R. Sustainable antimicrobial and antioxidant packaging: Environmental implications and solutions. Food Bioscience 2025, 68, 106347. doi:10.1016/j.fbio.2025.106347
  • Dogheim, G. M.; Alazhary, N. N.; Elbadry, O. A.; Amralla, M. T. Biosynthesized Silver Nanoparticles as an Environmental-Friendly Antibacterial Nanosystem against Methicillin-resistant Staphylococcus Aureus. Inorganic Chemistry Communications 2025, 173, 113809. doi:10.1016/j.inoche.2024.113809
  • Kim, K. W.; Oh, G.-W.; Ko, S.-C.; Kim, J.-Y.; Kim, C. H.; Kwon, Y. M.; Yim, M.-J.; Yoon, M.; Lee, D.-S. Light-enhanced antibacterial carbon dot nanocomposite synthesized using Sargassum horneri and inorganic precursors. Fisheries and Aquatic Sciences 2025, 28, 107–119. doi:10.47853/fas.2025.e11
  • Quilaqueo, S.; Bruna, J. E.; Galotto, M. J.; Guarda, A.; Rodríguez‐Mercado, F. J. Development of an antimicrobial material made of graphene oxide, polylactic acid/polyhydroxybutyrate, and CuO nanoparticles and its reprocessing effect on its properties. Polymer Composites 2025. doi:10.1002/pc.29628
  • Andrada Suarez, E. E.; Roca Jalil, M. E.; Fernandez Baldo, M. A.; Cuozzo, S. A. Nanobiotechnology approaches for the remediation of persistent and emerging organic pollutants: strategies, interactions, and effectiveness. Environmental Science: Nano 2025, 12, 979–1011. doi:10.1039/d4en00424h
  • Miao, H.; Wang, H.; Feng, X.; Jiao, H. One-step spray pyrolysis synthesis of ZnO/Ag hollow spheres for enhanced visible-light-driven antibacterial applications and wound healing. Dalton transactions (Cambridge, England : 2003) 2025, 54, 2574–2583. doi:10.1039/d4dt02581d
  • Diao, K.; Dong, T.; Yang, M.; Lu, J.; Zhu, Y. Enhancing long-term UV stability of WO2.9 oil-based nanofluids through surface modification with excess hexadecyl trimethoxysilane. Surfaces and Interfaces 2025, 58, 105805. doi:10.1016/j.surfin.2025.105805
  • Rehner Costache, A. M. G.; Tudorache, D.-I.; Bîrcă, A. C.; Nicoară, A. I.; Niculescu, A.-G.; Holban, A. M.; Hudiță, A.; Bîclesanu, F. C.; Balaure, P. C.; Pangică, A. M.; Grumezescu, A. M.; Croitoru, G.-A. Antibacterial Properties of PMMA/ZnO(NanoAg) Coatings for Dental Implant Abutments. Materials (Basel, Switzerland) 2025, 18, 382. doi:10.3390/ma18020382
  • Todorova, M.; Kosateva, A.; Petrova, V.; Ranguelov, B.; Atanasova-Vladimirova, S.; Avdeev, G.; Stoycheva, I.; Pisareva, E.; Tomova, A.; Velkova, L.; Dolashki, A.; Dolashka, P. Green Synthesis of Antibacterial CuO Nanoparticles Based on the Synergy Between Cornu aspersum Snail Mucus and Ascorbic Acid. Molecules (Basel, Switzerland) 2025, 30, 291. doi:10.3390/molecules30020291
  • Ahmad, I.; Abosaoda, M. K.; Kumar, A.; Sanghvi, G.; Roopashree, R.; Singh, D.; Saini, S. Preparation of a Novel Trimethoprim/Oxidized Pectin/Ti-MOF Nanoplymer as a Super Bioactive Agent. Journal of Inorganic and Organometallic Polymers and Materials 2025. doi:10.1007/s10904-024-03571-w
  • Lithi, I. J.; Ahmed Nakib, K. I.; Chowdhury, A. M. S.; Sahadat Hossain, M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co3O4, and TiO2) nanoparticles using plant extracts for developing antimicrobial properties. Nanoscale Advances 2025. doi:10.1039/d5na00037h
  • Vinayamohan, P. G.; Viju, L. S.; Joseph, D.; Venkitanarayanan, K. Antimicrobial Packaging for Poultry. Antimicrobial Food Packaging; Elsevier, 2025; pp 335–354. doi:10.1016/b978-0-323-90747-7.00021-1
  • Shakerinasab, E.; Ferraris, S.; Perero, S.; Maculotti, G.; Galetto, M.; Luganini, A.; Perin, M.; Mussano, F.; Sohbatzadeh, F.; Spriano, S. A biocompatible SiO2/ZnO coating with enhanced antibiofilm properties for dental applications. Applied Surface Science 2025, 690, 162590. doi:10.1016/j.apsusc.2025.162590
  • Glažar, D.; Štular, D.; Jerman, I.; Simončič, B.; Tomšič, B. Embedment of Biosynthesised Silver Nanoparticles in PolyNIPAAm/Chitosan Hydrogel for Development of Proactive Smart Textiles. Nanomaterials (Basel, Switzerland) 2024, 15, 10. doi:10.3390/nano15010010
  • Poyraz, S.; Cimentepe, M.; Cimentepe, O. O.; Yildirim, M. Innovative Nanoformulation Strategies of Hesperetin and Hesperidin: Pioneering Advances in Pharmaceutical Applications (A Review). Russian Journal of Bioorganic Chemistry 2024, 50, 2397–2425. doi:10.1134/s1068162024060025
Other Beilstein-Institut Open Science Activities