Supporting Information
| Supporting Information File 1: Details of the preparation of the ASCs, photographs and SEM images of the cellulose aerogel, electrochemical tests and the LED photograph of the ASCs device. | ||
| Format: PDF | Size: 841.6 KB | Download |
Cite the Following Article
High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel
Meixia Wang, Jing Zhang, Xibin Yi, Benxue Liu, Xinfu Zhao and Xiaochan Liu
Beilstein J. Nanotechnol. 2020, 11, 240–251.
https://doi.org/10.3762/bjnano.11.18
How to Cite
Wang, M.; Zhang, J.; Yi, X.; Liu, B.; Zhao, X.; Liu, X. Beilstein J. Nanotechnol. 2020, 11, 240–251. doi:10.3762/bjnano.11.18
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Otun, K. O.; Mketo, N. Preparation and applications of cellulose–zeolitic imidazolate frameworks (CelloZIFs) and their derivatives for sustainable energy storage: A critical review. Journal of Energy Storage 2025, 137, 118557. doi:10.1016/j.est.2025.118557
- Jiao, L.; Zhao, M.; Zheng, Q.; Ren, Q.; Su, Z.; Li, M.; Li, F. Zeolitic imidazolate framework-67-derived chalcogenides as electrode materials for supercapacitors. Dalton transactions (Cambridge, England : 2003) 2025, 54, 9803–9834. doi:10.1039/d4dt02957g
- Zhu, X.; Zeng, Y.; Zhao, X.; Liu, D.; Lei, W.; Lu, S. Biomass‐Derived Carbon and Their Composites for Supercapacitor Applications: Sources, Functions, and Mechanisms. EcoEnergy 2025, 3. doi:10.1002/ece2.70000
- Sawant, D. S.; Gaikwad, S. V.; Fulari, A. V.; Govindasamy, M.; Kulkarni, S. B.; Dubal, D. P.; Lohar, G. M. Theoretical Specific Capacity and Metal Ion Diffusion Pathway of NiMoO4 Microspheres for Hybrid Supercapacitors. Small (Weinheim an der Bergstrasse, Germany) 2025, 21, e2500080. doi:10.1002/smll.202500080
- Yuvaraja, R.; Sarathkumar, S.; Gowsalya, V.; Anitha Juliet, S. P.; Veeralakshmi, S.; Kalaiselvam, S.; Gunasekar, G. H.; Nehru, S. Rational design of NiMoO4/carbon nanocomposites for high-performance supercapacitors: an in situ carbon incorporation approach. Energy Advances 2025, 4, 94–105. doi:10.1039/d4ya00438h
- Zhang, C.; Zhu, L.; Geng, Y.; Li, Z.; Li, S.; Lian, Y.; Zhao, Z.; Huang, J.; Bai, J. Bacterial cellulose aerogel derived carbon supported CoO@NiO heterojunction for enhanced supercapacitor performance. Journal of Energy Storage 2025, 107, 114999. doi:10.1016/j.est.2024.114999
- Shafti, D. M.; Dahlan, I.; Din, A. T. M. A review of the effectiveness of metal–organic frameworks in removing dye effluents. Water Practice & Technology 2024, 19, 4699–4733. doi:10.2166/wpt.2024.279
- Tran, N.; Choi, H. W.; Tran, Q. N. A Review of Green Aerogel- and Xerogel-Based Electrodes for Supercapacitors. Polymers 2024, 16, 2848. doi:10.3390/polym16192848
- Luo, L.; Qian, X.; Wang, X. Bimetallic metal-organic frameworks and their derivatives for electrochemical energy conversion and storage: Recent progress, challenges and perspective. Journal of Energy Storage 2024, 98, 113052. doi:10.1016/j.est.2024.113052
- Dhandapani, P.; Nayak, P. K.; Maruthapillai, A. Soft-template assisted morphology tuning of NiMoO4 for hybrid supercapacitors. Electrochimica Acta 2024, 491, 144260. doi:10.1016/j.electacta.2024.144260
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chemistry, an Asian journal 2024, 19, e202400202. doi:10.1002/asia.202400202
- Nagarajan, D.; Mohideen, M. M.; Radhamani, A. V. Tailoring the Supercapacitance of Hydrothermally Synthesized Co3O4 Nanorods via Ni‐Doping and Fabrication of Symmetric and Asymmetric Supercapacitors. Energy Technology 2023, 12. doi:10.1002/ente.202300728
- Sağlam, S.; Türk, F. N.; Arslanoğlu, H. Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review. Journal of Environmental Chemical Engineering 2023, 11, 110568. doi:10.1016/j.jece.2023.110568
- Karthikeyan, A.; Mariappan, R.; Bakkiyaraj, R.; Krishnamoorthy, E. High electrochemical performance of Co3O4-PVDF-NMP-based supercapacitor electrode. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-10147-w
- Asif Rabbani, M.; Adeyemi Oladipo, A.; Kusaf, M. N and P Co‐doped Green Waste Derived Hierarchical Porous Carbon as a Supercapacitor Electrode for Energy Storage: Electrolyte Effects. ChemistrySelect 2023, 8. doi:10.1002/slct.202204288
- Deka, S. Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton transactions (Cambridge, England : 2003) 2023, 52, 839–856. doi:10.1039/d2dt02733j
- Francis, M. K.; Rajesh, K.; Bhargav, P. B.; Ahmed, N.; Balaji, C. Sustainability of current state-of-the-art supercapacitors: a case study. Smart Supercapacitors; Elsevier, 2023; pp 713–744. doi:10.1016/b978-0-323-90530-5.00009-5
- Nargatti, K. I.; Subhedar, A. R.; Ahankari, S. S.; Grace, A. N.; Dufresne, A. Nanocellulose-based aerogel electrodes for supercapacitors: A review. Carbohydrate polymers 2022, 297, 120039. doi:10.1016/j.carbpol.2022.120039
- Hakimyfard, A.; Samimifar, M.; Ostadjoola, S.; Khademinia, S.; Kafi‐Ahmadi, L. Lx‐β‐NiMoO4 (L = None, Al, V, Fe, Co) Nanocomposites: Facile Solid‐State Synthesis, Magnetic, Optical, and Electrochemical Properties. Crystal Research and Technology 2022, 57. doi:10.1002/crat.202200044
- Pershaanaa, M.; Bashir, S.; Ramesh, S.; Ramesh, K. Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage 2022, 50, 104599. doi:10.1016/j.est.2022.104599