Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

Secil Öztürk, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang and Christoph Janiak
Beilstein J. Nanotechnol. 2020, 11, 770–781. https://doi.org/10.3762/bjnano.11.62

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 1.4 MB Download

Cite the Following Article

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions
Secil Öztürk, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang and Christoph Janiak
Beilstein J. Nanotechnol. 2020, 11, 770–781. https://doi.org/10.3762/bjnano.11.62

How to Cite

Öztürk, S.; Xiao, Y.-X.; Dietrich, D.; Giesen, B.; Barthel, J.; Ying, J.; Yang, X.-Y.; Janiak, C. Beilstein J. Nanotechnol. 2020, 11, 770–781. doi:10.3762/bjnano.11.62

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 498.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Punzi, E.; Nguyen, X. T.; Pitzalis, E.; Mandoli, A.; Onor, M.; Marelli, M.; Poggini, L.; Tuci, G.; Giambastiani, G.; Evangelisti, C. Ultrasmall Nickel Nanoparticles on a Covalent Triazine Framework for Ammonia Borane Hydrolysis and Transfer Hydrogenation of Nitroaromatics. ACS Applied Nano Materials 2024. doi:10.1021/acsanm.3c05844
  • Li, R.; Lu, J.; Li, C.; Cui, Y.; Lv, D.; Chen, Y.; Wei, Y.; Wei, H.; Liang, B.; Bu, J. Mesoporous vanadium nitride nanofiber@N-doped carbon with excellent microwave absorption and anti-corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 686, 133420. doi:10.1016/j.colsurfa.2024.133420
  • Rademacher, L.; Beglau, T. H. Y.; Ali, B.; Sondermann, L.; Strothmann, T.; Boldog, I.; Barthel, J.; Janiak, C. Ruthenium nanoparticles on covalent triazine frameworks incorporating thiophene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A 2024, 12, 2093–2109. doi:10.1039/d3ta05597c
  • Dashtian, K.; Shahsavarifar, S.; Usman, M.; Joseph, Y.; Ganjali, M. R.; Yin, Z.; Rahimi-Nasrabadi, M. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coordination Chemistry Reviews 2024, 504, 215644. doi:10.1016/j.ccr.2023.215644
  • Shah, S. S. A.; Javed, M. S.; Najam, T.; Nazir, M. A.; ur Rehman, A.; Rauf, A.; Sohail, M.; Verpoort, F.; Bao, S.-J. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today 2023, 67, 229–255. doi:10.1016/j.mattod.2023.05.023
  • Zheng, Y.; Khan, N. A.; Ni, X.; Zhang, K. A. I.; Shen, Y.; Huang, N.; Kong, X. Y.; Ye, L. Emerging covalent triazine framework-based nanomaterials for electrochemical energy storage and conversion. Chemical communications (Cambridge, England) 2023, 59, 6314–6334. doi:10.1039/d3cc00712j
  • Wang, S.; Song, Y.; Wang, Z.; Xie, W.; Zhang, S.; Yao, C.; Zhao, Y.; Xu, Y. Facile synthesis of elemental sulfur-mediated fluorine-containing covalent triazine frameworks and their performance in lithium–sulfur batteries. New Journal of Chemistry 2023, 47, 6951–6957. doi:10.1039/d3nj00385j
  • Dymerska, A. G.; Środa, B.; Zielińska, B.; Mijowska, E. In situ insight into the low-temperature promotion of ZIF-67 in electrocatalytic oxygen evolution reaction. Materials & Design 2023, 226, 111637. doi:10.1016/j.matdes.2023.111637
  • Morais Ferreira, R. K.; Ben Miled, M.; Nishihora, R. K.; Christophe, N.; Carles, P.; Motz, G.; Bouzid, A.; Machado, R.; Masson, O.; Iwamoto, Y.; Célérier, S.; Habrioux, A.; Bernard, S. Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si-C-O-N(H) to promote electrocatalytic water oxidation in alkaline media. Nanoscale advances 2023, 5, 701–710. doi:10.1039/d2na00821a
  • Florent, M.; Bandosz, T. J. Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. Nanomaterials (Basel, Switzerland) 2022, 12, 4432. doi:10.3390/nano12244432
  • Rana, A. G.; Schwarze, M.; Tasbihi, M.; Sala, X.; García-Antón, J.; Minceva, M. Influence of Cocatalysts (Ni, Co, and Cu) and Synthesis Method on the Photocatalytic Activity of Exfoliated Graphitic Carbon Nitride for Hydrogen Production. Nanomaterials (Basel, Switzerland) 2022, 12, 4006. doi:10.3390/nano12224006
  • Fatimah, I.; Wijayanti, H. K.; Ramanda, G. D.; Tamyiz, M.; Doong, R.-A.; Sagadevan, S. Nanocomposite of Nickel Nanoparticles-Impregnated Biochar from Palm Leaves as Highly Active and Magnetic Photocatalyst for Methyl Violet Photocatalytic Oxidation. Molecules (Basel, Switzerland) 2022, 27, 6871. doi:10.3390/molecules27206871
  • ur Rehman, I.; Zhang, J.; Chen, J.; Wang, R. In situ derived Ni-N-CNTs from ZIF-8 crystals as efficient electrocatalysts for oxygen reduction reaction. Inorganic Chemistry Communications 2022, 144, 109922. doi:10.1016/j.inoche.2022.109922
  • Rademacher, L.; Beglau, T. H. Y.; Heinen, T.; Barthel, J.; Janiak, C. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Frontiers in chemistry 2022, 10, 945261. doi:10.3389/fchem.2022.945261
  • Sondermann, L.; Jiang, W.; Shviro, M.; Spieß, A.; Woschko, D.; Rademacher, L.; Janiak, C. Nickel-Based Metal-Organic Frameworks as Electrocatalysts for the Oxygen Evolution Reaction (OER). Molecules (Basel, Switzerland) 2022, 27, 1241. doi:10.3390/molecules27041241
  • Woitassek, D.; Lerch, S.; Jiang, W.; Shviro, M.; Roitsch, S.; Strassner, T.; Janiak, C. The Facile Deposition of Pt Nanoparticles on Reduced Graphite Oxide in Tunable Aryl Alkyl Ionic Liquids for ORR Catalysts. Molecules (Basel, Switzerland) 2022, 27, 1018. doi:10.3390/molecules27031018
  • Chai, D.; Min, X.; Harada, T.; Nakanishi, S.; Zhang, X. Covalent triazine framework anchored with atomically dispersed iron as an efficient catalyst for advanced oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 628, 127240. doi:10.1016/j.colsurfa.2021.127240
  • Meng, C.; Cao, Y.; Luo, Y.; Zhang, F.; Kong, Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T.; Liu, Q.; Sun, X. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers 2021, 8, 3007–3011. doi:10.1039/d1qi00345c
  • Wessely, I. D.; Schade, A.; Dey, S.; Bhunia, A.; Nuhnen, A.; Janiak, C.; Bräse, S. Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials (Basel, Switzerland) 2021, 14, 3214. doi:10.3390/ma14123214
  • Brandt, P.; Nuhnen, A.; Öztürk, S.; Kurt, G.; Liang, J.; Janiak, C. Comparative Evaluation of Different MOF and Non‐MOF Porous Materials for SO2 Adsorption and Separation Showing the Importance of Small Pore Diameters for Low‐Pressure Uptake. Advanced Sustainable Systems 2021, 5, 2000285. doi:10.1002/adsu.202000285
Other Beilstein-Institut Open Science Activities