Supporting Information
| Supporting Information File 1: Additional experimental data. | ||
| Format: PDF | Size: 1.4 MB | Download |
Cite the Following Article
Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions
Secil Öztürk, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang and Christoph Janiak
Beilstein J. Nanotechnol. 2020, 11, 770–781.
https://doi.org/10.3762/bjnano.11.62
How to Cite
Öztürk, S.; Xiao, Y.-X.; Dietrich, D.; Giesen, B.; Barthel, J.; Ying, J.; Yang, X.-Y.; Janiak, C. Beilstein J. Nanotechnol. 2020, 11, 770–781. doi:10.3762/bjnano.11.62
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 498.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- khan, S.; Almutairi, B. S.; Arslan, M.; Iqbal, M.; Ashraf, M.; El-Sabban, H. A.; Diab, M.; Kumar, A.; Kumar, P.; Oza, A. D. Covalent Triazine framework-modified strontium Titanate with zinc oxide for enhanced hydrogen evolution reaction and Supercapattery performance. Inorganic Chemistry Communications 2025, 180, 114907. doi:10.1016/j.inoche.2025.114907
- Othman, H.; Oestreich, R.; Küll, V.; Fetzer, M. N. A.; Janiak, C. Synthesis and Characterization of Covalent Triazine Frameworks Based on 4,4'-(Phenazine-5,10-diyl)dibenzonitrile and Its Application in CO2/CH4 Separation. Molecules (Basel, Switzerland) 2025, 30, 3110. doi:10.3390/molecules30153110
- Sönmez, T. Electrochemical performance and kinetics of Mn, Ni, Fe, and Co-loaded covalent triazine frameworks for oxygen evolution reaction in alkaline media. Fuel 2025, 403, 136106. doi:10.1016/j.fuel.2025.136106
- Tuci, G.; Moro, M.; Rossin, A.; Evangelisti, C.; Poggini, L.; Etzi, M.; Verlato, E.; Paolucci, F.; Liu, Y.; Valenti, G.; Giambastiani, G. Swapping CO2 electro-reduction active sites on a nickel-based hybrid formed on a "guilty" covalent triazine framework. Nanoscale 2025, 17, 8850–8860. doi:10.1039/d4nr05259e
- Han, H.; Zhang, Y.; Zhou, C.; Yun, H.; Kang, Y.; Du, K.; Wang, J.; Chao, S.; Wang, J. S- and N-Co-Doped Carbon-Nanoplate-Encased Ni Nanoparticles Derived from Dual-Ligand-Assembled Ni-MOFs as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Molecules (Basel, Switzerland) 2025, 30, 820. doi:10.3390/molecules30040820
- Janak; Sapner, V. S.; Sathe, B. R.; Khullar, S. Construction of efficient Pb(II) carboxylate catalysts for the oxygen and hydrogen evolution reactions. Dalton transactions (Cambridge, England : 2003) 2025, 54, 1087–1102. doi:10.1039/d4dt02958e
- Karnitski, A.; Natarajan, L.; Lee, Y. J.; Kim, S.-S. Controlled chemical transformation of lignin by nitric acid treatment and carbonization. International journal of biological macromolecules 2024, 281, 136408. doi:10.1016/j.ijbiomac.2024.136408
- Avalos-Ballester, V.; Acosta, B.; Smolentseva, E. Remarkable Enhancement of Catalytic Reduction of Nitrophenol Isomers by Decoration of Ni Nanosheets with Cu Species. ACS omega 2024, 9, 37981–37994. doi:10.1021/acsomega.4c04762
- Samanta, A.; Kumar, M. M.; Ghora, S.; Ghatak, A.; Bhattacharya, S.; Kumar, V.; Raj, C. R. Tuning the oxygen electrocatalytic performance of metal-doped graphitic carbon nitride for the development of zinc-air battery. Journal of Chemical Sciences 2024, 136. doi:10.1007/s12039-024-02295-1
- Mathur, N.; Mahala, S.; Khorwal, A. K.; Bitla, Y.; Goswami, B.; Roy, P.; Joshi, H. Magnetic Nickel Nanoparticles Supported on Oxidized Charcoal as a Recoverable Catalyst for N-Alkylation of Amines with Alcohols. ACS Applied Nano Materials 2024, 7, 11159–11169. doi:10.1021/acsanm.4c00492
- Dashtian, K.; Shahsavarifar, S.; Usman, M.; Joseph, Y.; Ganjali, M. R.; Yin, Z.; Rahimi-Nasrabadi, M. A comprehensive review on advances in polyoxometalate based materials for electrochemical water splitting. Coordination Chemistry Reviews 2024, 504, 215644. doi:10.1016/j.ccr.2023.215644
- Li, R.; Lu, J.; Li, C.; Cui, Y.; Lv, D.; Chen, Y.; Wei, Y.; Wei, H.; Liang, B.; Bu, J. Mesoporous vanadium nitride nanofiber@N-doped carbon with excellent microwave absorption and anti-corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 686, 133420. doi:10.1016/j.colsurfa.2024.133420
- Punzi, E.; Nguyen, X. T.; Pitzalis, E.; Mandoli, A.; Onor, M.; Marelli, M.; Poggini, L.; Tuci, G.; Giambastiani, G.; Evangelisti, C. Ultrasmall Nickel Nanoparticles on a Covalent Triazine Framework for Ammonia Borane Hydrolysis and Transfer Hydrogenation of Nitroaromatics. ACS Applied Nano Materials 2024, 7, 6916–6926. doi:10.1021/acsanm.3c05844
- Rademacher, L.; Beglau, T. H. Y.; Ali, B.; Sondermann, L.; Strothmann, T.; Boldog, I.; Barthel, J.; Janiak, C. Ruthenium nanoparticles on covalent triazine frameworks incorporating thiophene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A 2024, 12, 2093–2109. doi:10.1039/d3ta05597c
- Shah, S. S. A.; Javed, M. S.; Najam, T.; Nazir, M. A.; ur Rehman, A.; Rauf, A.; Sohail, M.; Verpoort, F.; Bao, S.-J. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today 2023, 67, 229–255. doi:10.1016/j.mattod.2023.05.023
- Zheng, Y.; Khan, N. A.; Ni, X.; Zhang, K. A. I.; Shen, Y.; Huang, N.; Kong, X. Y.; Ye, L. Emerging covalent triazine framework-based nanomaterials for electrochemical energy storage and conversion. Chemical communications (Cambridge, England) 2023, 59, 6314–6334. doi:10.1039/d3cc00712j
- Wang, S.; Song, Y.; Wang, Z.; Xie, W.; Zhang, S.; Yao, C.; Zhao, Y.; Xu, Y. Facile synthesis of elemental sulfur-mediated fluorine-containing covalent triazine frameworks and their performance in lithium–sulfur batteries. New Journal of Chemistry 2023, 47, 6951–6957. doi:10.1039/d3nj00385j
- Dymerska, A. G.; Środa, B.; Zielińska, B.; Mijowska, E. In situ insight into the low-temperature promotion of ZIF-67 in electrocatalytic oxygen evolution reaction. Materials & Design 2023, 226, 111637. doi:10.1016/j.matdes.2023.111637
- Morais Ferreira, R. K.; Ben Miled, M.; Nishihora, R. K.; Christophe, N.; Carles, P.; Motz, G.; Bouzid, A.; Machado, R.; Masson, O.; Iwamoto, Y.; Célérier, S.; Habrioux, A.; Bernard, S. Low temperature in situ immobilization of nanoscale fcc and hcp polymorphic nickel particles in polymer-derived Si-C-O-N(H) to promote electrocatalytic water oxidation in alkaline media. Nanoscale advances 2023, 5, 701–710. doi:10.1039/d2na00821a
- Florent, M.; Bandosz, T. J. Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. Nanomaterials (Basel, Switzerland) 2022, 12, 4432. doi:10.3390/nano12244432