The role of convolutional neural networks in scanning probe microscopy: a review

Ido Azuri, Irit Rosenhek-Goldian, Neta Regev-Rudzki, Georg Fantner and Sidney R. Cohen
Beilstein J. Nanotechnol. 2021, 12, 878–901. https://doi.org/10.3762/bjnano.12.66

Cite the Following Article

The role of convolutional neural networks in scanning probe microscopy: a review
Ido Azuri, Irit Rosenhek-Goldian, Neta Regev-Rudzki, Georg Fantner and Sidney R. Cohen
Beilstein J. Nanotechnol. 2021, 12, 878–901. https://doi.org/10.3762/bjnano.12.66

How to Cite

Azuri, I.; Rosenhek-Goldian, I.; Regev-Rudzki, N.; Fantner, G.; Cohen, S. R. Beilstein J. Nanotechnol. 2021, 12, 878–901. doi:10.3762/bjnano.12.66

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kurtjak, M.; Tomas, V.; Ivović, L.; Fabijan, D.; Perčić, M.; Križan, H.; Tota, M.; Saftić Martinović, L.; Tarčuković, J.; Štajduhar, I.; Malenica, M. Automated morphological classification and quantification of cerebrospinal fluid extracellular vesicles via AFM and machine learning. Nanoscale advances 2025. doi:10.1039/d5na00665a
  • Garcia, R.; Tejedor, J. R. Advances in nanomechanical property mapping by atomic force microscopy. Nanoscale advances 2025, 7, 6286–6307. doi:10.1039/d5na00702j
  • Gelman, S.; Rosenhek-Goldian, I.; Kampf, N.; Patočka, M.; Rios, M.; Penedo, M.; Fantner, G.; Beker, A.; Cohen, S. R.; Azuri, I. Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images. Beilstein journal of nanotechnology 2025, 16, 1129–1140. doi:10.3762/bjnano.16.83
  • Das, H.; Sharma, M. Transforming Computational Nanotechnology: Accelerating Material Discovery, Design, and Property Prediction through Soft Computing Techniques. ACS Applied Electronic Materials 2025, 7, 5757–5787. doi:10.1021/acsaelm.5c00842
  • Matveev, A. V.; Okunev, A. G.; Nartova, A. V. doi:10.1002/9783527847068.ch03
  • Gao, L.; Tu, P.; Yang, G.; Yang, S. Uncertainty Modeling of Fouling Thickness and Morphology on Compressor Blade. Aerospace 2025, 12, 547. doi:10.3390/aerospace12060547
  • Zafar, S.; Rana, N. The Convergence of Nanotechnology and Artificial Intelligence: Unlocking Future Innovations. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 2025, 18, 85–99. doi:10.2174/0124055204359215250127071256
  • Tejedor, J. R.; Garcia, R. High-Throughput Nanorheology of Living Cells Powered by Supervised Machine Learning. Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) 2025, 7, 2400867. doi:10.1002/aisy.202400867
  • K, S.; S, V.; S, R.; D, R.; R, S. Financial Transactional Fraud Detection using a Hybrid BiLSTM with Attention-Based Autoencoder. International Research Journal of Multidisciplinary Technovation 2025, 135–147. doi:10.54392/irjmt25211
  • Hallfors, N.; Lamprou, C.; Luo, S.; Alkhatib, S. A.; Sapudom, J.; Aubry, C.; Alhammadi, J.; Chan, V.; Stefanini, C.; Teo, J.; Hadjileontiadis, L.; Pappa, A.-M. Data-driven analysis for the evaluation of cortical mechanics of non-adherent cells. Scientific reports 2025, 15, 9700. doi:10.1038/s41598-025-94315-4
  • Wouters, L.; Peters, K.; Lagrain, P.; Drees, R.; Peric, N.; Hantschel, T. Leveraging Artificial Intelligence and Reverse Tip Sample Configuration for Automation of Data Processing in Quantitative Scanning Spreading Resistance Microscopy. physica status solidi (a) 2024, 222. doi:10.1002/pssa.202400688
  • Pregowska, A.; Roszkiewicz, A.; Osial, M.; Giersig, M. How scanning probe microscopy can be supported by artificial intelligence and quantum computing?. Microscopy research and technique 2024, 87, 2515–2539. doi:10.1002/jemt.24629
  • She, D. T.; Nai, M. H.; Lim, C. T. Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies. Med-X 2024, 2. doi:10.1007/s44258-024-00022-6
  • Sokolov, I. On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition. Physical chemistry chemical physics : PCCP 2024, 26, 11263–11270. doi:10.1039/d3cp05673b
  • Smalley, D.; Lough, S. D.; Holtzman, L.; Xu, K.; Holbrook, M.; Rosenberger, M. R.; Hone, J. C.; Barmak, K.; Ishigami, M. Detecting atomic-scale surface defects in STM of TMDs with ensemble deep learning. MRS Advances 2024, 9, 890–896. doi:10.1557/s43580-024-00837-w
  • Rosenhek-Goldian, I.; Cohen, S. R. Some considerations in nanoindentation measurement and analysis by atomic force microscopy. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0003136
  • Petrov, M.; Sokolov, I. Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps. Cells 2023, 12, 2536. doi:10.3390/cells12212536
  • Wu, H.; Zhang, L.; Zhao, B.; Yang, W.; Galluzzi, M. Deep learning strategy for small dataset from atomic force microscopy mechano-imaging on macrophages phenotypes. Frontiers in bioengineering and biotechnology 2023, 11, 1259979. doi:10.3389/fbioe.2023.1259979
  • Groenendijk, R.; Dorst, L.; Gevers, T. Geometric Back-Propagation in Morphological Neural Networks. IEEE transactions on pattern analysis and machine intelligence 2023, 45, 14045–8. doi:10.1109/tpami.2023.3290615
  • Mazalan, M.; Do, T.-D.; Zaman, W. S. W. K.; Ramlan, E. I. Machine Learning Approaches for Stem Cells. Current Stem Cell Reports 2023, 9, 43–56. doi:10.1007/s40778-023-00228-1

Patents

  • GARCÍA GARCÍA RICARDO; TEJEDOR REYES JAIME. MACHINE LEARNING METHOD FOR PROCESSING FORCEDISTANCE CURVES IN FORCE MICROSCOPY. WO 2025153208 A1, July 24, 2025.
  • GARCÍA GARCÍA RICARDO; TEJEDOR REYES JAIME. MACHINE LEARNING METHOD FOR PROCESSING FORCE-DISTANCE CURVES IN FORCE MICROSCOPY. EP 4589305 A1, July 23, 2025.
Other Beilstein-Institut Open Science Activities