Cite the Following Article
The role of convolutional neural networks in scanning probe microscopy: a review
Ido Azuri, Irit Rosenhek-Goldian, Neta Regev-Rudzki, Georg Fantner and Sidney R. Cohen
Beilstein J. Nanotechnol. 2021, 12, 878–901.
https://doi.org/10.3762/bjnano.12.66
How to Cite
Azuri, I.; Rosenhek-Goldian, I.; Regev-Rudzki, N.; Fantner, G.; Cohen, S. R. Beilstein J. Nanotechnol. 2021, 12, 878–901. doi:10.3762/bjnano.12.66
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 11.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mim, J. J.; Mamun, A. A.; Nayem, M. H.; Mahmud, S.; Nath, A.; Rahman, S. M.; Fidal, S. A.; Hossain, N. Machine learning-driven advances in nanotechnology: From materials design to process optimization – A review. Materials Today Communications 2026, 50, 114485. doi:10.1016/j.mtcomm.2025.114485
- Deng, X.; Liu, J. Probing Electrochemical CO2 Reduction: Insights from in Situ Scanning Probe Microscopy. ChemSusChem 2025, 19, e202501581. doi:10.1002/cssc.202501581
- Gupta, A. D.; Yadav, Y.; Khandelwal, N. A Novel Quad-Path GAN for Bidirectional Brain Image Translation Between CT and MRI. Springer Science and Business Media LLC 2025. doi:10.21203/rs.3.rs-8310813/v1
- Lu, C.; Huang, G.; Zuo, Z.; Xu, F.; Zhao, C.; Wang, G.; Peng, Q.; Qiu, J. A Comprehensive Review of Nuclear Mechanics: Advances, Disease Relevance, Methodologies, and AI Applications. Cell biochemistry and biophysics 2025. doi:10.1007/s12013-025-01964-3
- Kurtjak, M.; Tomas, V.; Ivović, L.; Fabijan, D.; Perčić, M.; Križan, H.; Tota, M.; Saftić Martinović, L.; Tarčuković, J.; Štajduhar, I.; Malenica, M. Automated morphological classification and quantification of cerebrospinal fluid extracellular vesicles via AFM and machine learning. Nanoscale advances 2025, 7, 7780–7797. doi:10.1039/d5na00665a
- Garcia, R.; Tejedor, J. R. Advances in nanomechanical property mapping by atomic force microscopy. Nanoscale advances 2025, 7, 6286–6307. doi:10.1039/d5na00702j
- Gelman, S.; Rosenhek-Goldian, I.; Kampf, N.; Patočka, M.; Rios, M.; Penedo, M.; Fantner, G.; Beker, A.; Cohen, S. R.; Azuri, I. Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images. Beilstein journal of nanotechnology 2025, 16, 1129–1140. doi:10.3762/bjnano.16.83
- Das, H.; Sharma, M. Transforming Computational Nanotechnology: Accelerating Material Discovery, Design, and Property Prediction through Soft Computing Techniques. ACS Applied Electronic Materials 2025, 7, 5757–5787. doi:10.1021/acsaelm.5c00842
- Matveev, A. V.; Okunev, A. G.; Nartova, A. V. doi:10.1002/9783527847068.ch03
- Gao, L.; Tu, P.; Yang, G.; Yang, S. Uncertainty Modeling of Fouling Thickness and Morphology on Compressor Blade. Aerospace 2025, 12, 547. doi:10.3390/aerospace12060547
- Zafar, S.; Rana, N. The Convergence of Nanotechnology and Artificial Intelligence: Unlocking Future Innovations. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 2025, 18, 85–99. doi:10.2174/0124055204359215250127071256
- Tejedor, J. R.; Garcia, R. High-Throughput Nanorheology of Living Cells Powered by Supervised Machine Learning. Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) 2025, 7, 2400867. doi:10.1002/aisy.202400867
- K, S.; S, V.; S, R.; D, R.; R, S. Financial Transactional Fraud Detection using a Hybrid BiLSTM with Attention-Based Autoencoder. International Research Journal of Multidisciplinary Technovation 2025, 135–147. doi:10.54392/irjmt25211
- Hallfors, N.; Lamprou, C.; Luo, S.; Alkhatib, S. A.; Sapudom, J.; Aubry, C.; Alhammadi, J.; Chan, V.; Stefanini, C.; Teo, J.; Hadjileontiadis, L.; Pappa, A.-M. Data-driven analysis for the evaluation of cortical mechanics of non-adherent cells. Scientific reports 2025, 15, 9700. doi:10.1038/s41598-025-94315-4
- Wouters, L.; Peters, K.; Lagrain, P.; Drees, R.; Peric, N.; Hantschel, T. Leveraging Artificial Intelligence and Reverse Tip Sample Configuration for Automation of Data Processing in Quantitative Scanning Spreading Resistance Microscopy. physica status solidi (a) 2024, 222. doi:10.1002/pssa.202400688
- Pregowska, A.; Roszkiewicz, A.; Osial, M.; Giersig, M. How scanning probe microscopy can be supported by artificial intelligence and quantum computing?. Microscopy research and technique 2024, 87, 2515–2539. doi:10.1002/jemt.24629
- She, D. T.; Nai, M. H.; Lim, C. T. Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies. Med-X 2024, 2. doi:10.1007/s44258-024-00022-6
- Sokolov, I. On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition. Physical chemistry chemical physics : PCCP 2024, 26, 11263–11270. doi:10.1039/d3cp05673b
- Smalley, D.; Lough, S. D.; Holtzman, L.; Xu, K.; Holbrook, M.; Rosenberger, M. R.; Hone, J. C.; Barmak, K.; Ishigami, M. Detecting atomic-scale surface defects in STM of TMDs with ensemble deep learning. MRS Advances 2024, 9, 890–896. doi:10.1557/s43580-024-00837-w
- Rosenhek-Goldian, I.; Cohen, S. R. Some considerations in nanoindentation measurement and analysis by atomic force microscopy. Journal of Vacuum Science & Technology A 2023, 41. doi:10.1116/6.0003136
Patents
- GARCÍA GARCÍA RICARDO; TEJEDOR REYES JAIME. MACHINE LEARNING METHOD FOR PROCESSING FORCEDISTANCE CURVES IN FORCE MICROSCOPY. WO 2025153208 A1, July 24, 2025.
- GARCÍA GARCÍA RICARDO; TEJEDOR REYES JAIME. MACHINE LEARNING METHOD FOR PROCESSING FORCE-DISTANCE CURVES IN FORCE MICROSCOPY. EP 4589305 A1, July 23, 2025.