Self-assembly of amino acids toward functional biomaterials

Huan Ren, Lifang Wu, Lina Tan, Yanni Bao, Yuchen Ma, Yong Jin and Qianli Zou
Beilstein J. Nanotechnol. 2021, 12, 1140–1150. https://doi.org/10.3762/bjnano.12.85

Cite the Following Article

Self-assembly of amino acids toward functional biomaterials
Huan Ren, Lifang Wu, Lina Tan, Yanni Bao, Yuchen Ma, Yong Jin and Qianli Zou
Beilstein J. Nanotechnol. 2021, 12, 1140–1150. https://doi.org/10.3762/bjnano.12.85

How to Cite

Ren, H.; Wu, L.; Tan, L.; Bao, Y.; Ma, Y.; Jin, Y.; Zou, Q. Beilstein J. Nanotechnol. 2021, 12, 1140–1150. doi:10.3762/bjnano.12.85

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhao, J.; Liu, Q.; Tong, X.; Wang, Y.; Cai, K.; Ji, W. Rational Design of Bio‐Inspired Peptide Electronic Materials toward Bionanotechnology: Strategies and Applications. Advanced Functional Materials 2024. doi:10.1002/adfm.202401466
  • Basuroy, K.; de Jesus Velazquez-Garcia, J.; Techert, S. Investigation of encapsulated water wire within self-assembled hydrophilic nanochannels, in a modified γ4-amino acid crystals: Tracking thermally induced changes of intermolecular interactions within a crystalline hydrate. Amino acids 2024, 56, 9. doi:10.1007/s00726-023-03372-4
  • Zhang, J.; Zhou, L.; Jiang, X.; Hu, W.; Yang, R. Self-Assembly of Metabolite Nanostructures toward Functional Biomaterials. ACS Materials Letters 2024, 6, 674–696. doi:10.1021/acsmaterialslett.3c01337
  • Tiwari, O. S.; Gazit, E. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods in Enzymology; Elsevier, 2024. doi:10.1016/bs.mie.2024.01.018
  • Ghanbari, B.; Moeinian, M.; Kubicki, M.; Janczak, J. Supramolecular promotion of chemosensing effect in a new amino-acid-derivative macrocyclic ligand toward Fe(III) and Pb(II) by Zn(II) polymerization. Journal of Photochemistry and Photobiology A: Chemistry 2024, 449, 115399. doi:10.1016/j.jphotochem.2023.115399
  • Shabbir, M.; Atiq, A.; Atiq, M.; Andleeb, F.; Khan, H. M.; Abbas, M. Development of metal–peptide composite nanomaterials for diagnosis and phototherapy. Organic Nanomaterials for Cancer Phototheranostics; Elsevier, 2024; pp 81–92. doi:10.1016/b978-0-323-95758-8.00002-2
  • Wang, Y.; Rencus-Lazar, S.; Zhou, H.; Yin, Y.; Jiang, X.; Cai, K.; Gazit, E.; Ji, W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS nano 2023, 18, 1257–1288. doi:10.1021/acsnano.3c08183
  • Smirnova, K. A.; Khizhnyak, S. D.; Ivanova, A. I.; Pakhomov, P. M. Self-Assembly and Production of Films with Silver Nanoparticles from Aqueous Glycine–Silver Solution with Polyvinyl Alcohol. Russian Journal of Applied Chemistry 2023, 96, 228–236. doi:10.1134/s1070427223010144
  • Petrovic, S. M.; Barbinta-Patrascu, M.-E. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. Materials (Basel, Switzerland) 2023, 16, 7550. doi:10.3390/ma16247550
  • Buddhiraju, H. S.; Yadav, D. N.; Dey, S.; Eswar, K.; Padmakumar, A.; Rengan, A. K. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS applied bio materials 2023. doi:10.1021/acsabm.3c00711
  • Wu, W.; Yang, J.; Zhou, Y.; Zheng, Q.; Chen, Q.; Bai, Z.; Niu, J. Chemometrics‐based signal processing methods for biosensors in health and environment: A review. Electroanalysis 2023. doi:10.1002/elan.202300207
  • Ajikumar, A.; Premkumar, A. K. N.; Narayanan, S. P. The self-assembly of L-histidine might be the cause of histidinemia. Scientific reports 2023, 13, 17461. doi:10.1038/s41598-023-44749-5
  • Narayanan, S.; Ajikumar, A.; Premkumar, A. The self-assembly of L-histidine might be the cause of histidinemia. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3091379/v1
  • Gour, N.; Kshtriya, V.; Koshti, B.; Patel, M.; Boukhvalov, D. W. Controlled aggregation properties of threonine modified by protecting groups to unusual self‐assembled structures. Peptide Science 2023, 115. doi:10.1002/pep2.24324
  • Show, P.-L.; Chew, K. W.; Ong, W.-J.; Varjani, S.; Juan, J. C. New trends in nanobiotechnology. Beilstein journal of nanotechnology 2023, 14, 377–379. doi:10.3762/bjnano.14.32
  • Sharipov, T. I.; Sakhautdinov, I. M.; Talipov, R. F.; Garafutdinov, R. R. Formation of quasi-stable nanostructures from L-N-stearoyl glutamic acid and its dimethyl ester on solid surfaces. Journal of Nanoparticle Research 2023, 25. doi:10.1007/s11051-023-05723-4
  • He, L.; Xu, F.; Li, Y.; Jin, H.; Lo, P.-C. Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia. Acta biomaterialia 2023, 162, 57–71. doi:10.1016/j.actbio.2023.03.020
  • Tiwari, O. S.; Aizen, R.; Meli, M.; Colombo, G.; Shimon, L. J. W.; Tal, N.; Gazit, E. Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials. ACS nano 2023, 17, 3506–3517. doi:10.1021/acsnano.2c09872
  • Uyaver, S. Tyrosine, Phenylalanine, and Tryptophan Undergo Self-Aggregation in Similar and Different Manners. Atmosphere 2022, 13, 1448. doi:10.3390/atmos13091448
  • Zhu, S.; He, Z.; Ji, L.; Zhang, W.; Tong, Y.; Luo, J.; Zhang, Y.; Li, Y.; Meng, X.; Bi, Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Frontiers in bioengineering and biotechnology 2022, 10, 897010. doi:10.3389/fbioe.2022.897010
Other Beilstein-Institut Open Science Activities