Supporting Information
Figure S1: Literature survey on precious metals. Figures S2–S21: TEM characterization and pictures of the nanomaterials obtained. Figure S22: SAXS characterization of the nanomaterials obtained. Figure S23: TEM characterization of the nanomaterials obtained. Figure S24: XRD characterization of the nanomaterials obtained. Figures S25–42: PDF characterization of the nanomaterials obtained. Figures S43–45: Crystal structures and models of the different clusters and complexes. Figure S46: PDF characterization of the nanomaterials obtained. Table S1: Overview of the parameters studied. Table S2: Fit parameters for SAXS. Tables S3–S13: Refined parameters for PDF.
| Supporting Information File 1: Additional experimental information. | ||
| Format: PDF | Size: 8.3 MB | Download |
Cite the Following Article
How to Cite
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.5 MB | Download |
Citations to This Article
Scholarly Works
- Deshmukh, L.; Kadam, S. L. A novel study on photo dependent current voltage characteristics of SnO2 nanoparticles. Physica Scripta 2025, 100, 95946. doi:10.1088/1402-4896/ae036f
- Quinson, J. Unlocking the Full Potential of Platinum Group Metals with Simpler and More Sustainable Syntheses of Nanomaterials. Johnson Matthey Technology Review 2025, 70, 4–20. doi:10.1595/205651326x17520721599435
- Varga, M.; Quinson, J. Fewer, but Better: On the Benefits of Surfactant‐Free Colloidal Syntheses of Nanomaterials. ChemistrySelect 2025, 10. doi:10.1002/slct.202404819
- Jensen, T. B.; Saugbjerg, J. R.; Henriksen, M. L.; Quinson, J. Towards the automation of nanoparticle syntheses: The case study of gold nanoparticles obtained at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 702, 135125. doi:10.1016/j.colsurfa.2024.135125
- Quinson, J.; Nielsen, T. M.; Escudero-Escribano, M.; Jensen, K. M. Room temperature syntheses of surfactant-free colloidal gold nanoparticles: The benefits of mono-alcohols over polyols as reducing agents for electrocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 675, 131853. doi:10.1016/j.colsurfa.2023.131853
- Quinson, J.; Kunz, S.; Arenz, M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catalysis 2023, 13, 4903–4937. doi:10.1021/acscatal.2c05998
- Quinson, J.; Aalling-Frederiksen, O.; Dacayan, W. L.; Bjerregaard, J. D.; Jensen, K. D.; Jørgensen, M. R. V.; Kantor, I.; Sørensen, D. R.; Theil Kuhn, L.; Johnson, M. S.; Escudero-Escribano, M.; Simonsen, S. B.; Jensen, K. M. Ø. Surfactant-Free Colloidal Syntheses of Gold-Based Nanomaterials in Alkaline Water and Mono-alcohol Mixtures. Chemistry of materials : a publication of the American Chemical Society 2023, 35, 2173–2190. doi:10.1021/acs.chemmater.3c00090
- Quinson, J. Osmium and OsO x nanoparticles: an overview of syntheses and applications. Open research Europe 2022, 2, 39. doi:10.12688/openreseurope.14595.2
- Quinson, J. Osmium and OsOx nanoparticles: an overview of syntheses and applications. Open Research Europe 2022, 2, 39. doi:10.12688/openreseurope.14595.1