Sputtering onto liquids: a critical review

Anastasiya Sergievskaya, Adrien Chauvin and Stephanos Konstantinidis
Beilstein J. Nanotechnol. 2022, 13, 10–53. https://doi.org/10.3762/bjnano.13.2

Supporting Information

Tables containing the most important sputtering parameters (target material and target diameter, working distance, working gas composition, working gas pressure, current, voltage, and sputter time), host liquid parameters (liquid composition and volume or weight, vessel size, and temperature) and the size of obtained monometallic or oxide NPs for 89 references published on SoL can be found in the Supporting Information.

Supporting Information File 1: Sputtering onto liquids: Table with experimental parameters.
Format: PDF Size: 660.6 KB Download
Supporting Information File 2: Comparison the sizes of the metal NPs prepared by magnetron sputtering onto similar host liquids.
Format: PDF Size: 226.4 KB Download

Cite the Following Article

Sputtering onto liquids: a critical review
Anastasiya Sergievskaya, Adrien Chauvin and Stephanos Konstantinidis
Beilstein J. Nanotechnol. 2022, 13, 10–53. https://doi.org/10.3762/bjnano.13.2

How to Cite

Sergievskaya, A.; Chauvin, A.; Konstantinidis, S. Beilstein J. Nanotechnol. 2022, 13, 10–53. doi:10.3762/bjnano.13.2

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 8.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sergievskaya, A.; Alem, H.; Konstantinidis, S. Magnetron sputtering onto nonionic surfactant for 1-step preparation of metal nanoparticles without additional chemical reagents. Nanotechnology 2023, 34, 265601. doi:10.1088/1361-6528/acc7a9
  • Alves, A. C. P. M.; Santos, L. M. N. B. F.; Bastos, M.; Costa, J. C. S. Confined Silver Nanoparticles in Ionic Liquid Films. Molecules (Basel, Switzerland) 2023, 28, 3029. doi:10.3390/molecules28073029
  • Ibrahim, S.; Ntomprougkidis, V.; Goutte, M.; Monier, G.; Traïkia, M.; Andanson, J.-M.; Bonnet, P.; Bousquet, A. Reactive sputtering onto an ionic liquid, a new synthesis route for bismuth-based nanoparticles. Nanoscale 2023, 15, 5499–5509. doi:10.1039/d2nr07028f
  • Hossain, M. I.; Mansour, S. A critical overview of thin films coating technologies for energy applications. Cogent Engineering 2023, 10. doi:10.1080/23311916.2023.2179467
  • Kylián, O.; Nikitin, D.; Hanuš, J.; Ali-Ogly, S.; Pleskunov, P.; Biederman, H. Plasma-assisted gas-phase aggregation of clusters for functional nanomaterials. Journal of Vacuum Science & Technology A 2023, 41, 20802–020802. doi:10.1116/6.0002374
  • Lacmanova, V.; Leitner, J.; Hausild, P.; Cech, J.; Nohava, J.; Sajdl, P.; Michalcova, A.; Slepicka, P.; Reznickova, A. Annealing of Cu nanolayers on glass: Structural, mechanical and thermodynamic analysis. Vacuum 2023, 212, 111991. doi:10.1016/j.vacuum.2023.111991
  • Sergievskaya, A.; Absil, R.; Chauvin, A.; Yusenko, K. V.; Veselý, J.; Godfroid, T.; Konstantinidis, S. Sputtering onto liquids: how does the liquid viscosity affect the formation of nanoparticles and metal films?. Physical chemistry chemical physics : PCCP 2023, 25, 2803–2809. doi:10.1039/d2cp03038a
  • Lagopati, N.; Efstathopoulos, E. P.; Veroutis, D.; Katifelis, H.; Theocharous, G.; Pantelis, P.; Evangelou, K.; Gorgoulis, V. G.; Gazouli, M. Hybrid Multifunctional Nanomaterials for Diagnostic and Therapeutic Applications. Nanotechnology in the Life Sciences; Springer International Publishing, 2022; pp 489–519. doi:10.1007/978-3-031-12658-1_17
  • Kulkarni, M. B.; Ayachit, N. H.; Aminabhavi, T. M. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors 2022, 12, 892. doi:10.3390/bios12100892
  • Akiyoshi, K.; Watanabe, Y.; Kameyama, T.; Kawawaki, T.; Negishi, Y.; Kuwabata, S.; Torimoto, T. Composition control of alloy nanoparticles consisting of bulk-immiscible Au and Rh metals via an ionic liquid/metal sputtering technique for improving their electrocatalytic activity. Physical chemistry chemical physics : PCCP 2022, 24, 24335–24344. doi:10.1039/d2cp01461k
  • Mandal, A. K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D. P.; Shah, A. K.; Bhattarai, N.; Parajuli, N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. Nanomaterials (Basel, Switzerland) 2022, 12, 3066. doi:10.3390/nano12173066
  • Patel, K.; Sergievskaya, A.; Chauhan, S.; Konstantinidis, S. Heating of liquid substrate by low-pressure sputtering plasma. Journal of Applied Physics 2022, 131, 203301. doi:10.1063/5.0089214
Other Beilstein-Institut Open Science Activities