Supporting Information
Figure S1: The toxic effect of polyacrylamide hydrogel substrates on prostate cancer cells. Figure S2: The effect of substrate stiffness on cell proliferation. Figure S3: The effect of substrate stiffness on cell morphology. Figure S4: The effect of blebbistatin on PCa cytoskeleton microfilaments. Figure S5: The effect of blebbistatin on PCa cell migration. Figure S6: Mechanical properties respond to the effect of substrate stiffness.
| Supporting Information File 1: Additional figures. | ||
| Format: PDF | Size: 1.2 MB | Download |
Cite the Following Article
Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy
Xiaoqiong Tang, Yan Zhang, Jiangbing Mao, Yuhua Wang, Zhenghong Zhang, Zhengchao Wang and Hongqin Yang
Beilstein J. Nanotechnol. 2022, 13, 560–569.
https://doi.org/10.3762/bjnano.13.47
How to Cite
Tang, X.; Zhang, Y.; Mao, J.; Wang, Y.; Zhang, Z.; Wang, Z.; Yang, H. Beilstein J. Nanotechnol. 2022, 13, 560–569. doi:10.3762/bjnano.13.47
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 9.8 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Baylot, V.; Alies, B.; Rocchi, P.; Barthélémy, P. Control of cancer cell phenotypes via supramolecular hydrogels: the role of extracellular matrix stiffness. Materials Advances 2025, 6, 6257–6261. doi:10.1039/d5ma00579e
- Fan, H.; Xu, Z.; Rodriguez, C. B.; Dover, N.; Demkov, A.; Lilly, M.; Aguilar, G.; Suva, L. J.; Zhang, X. H.-F.; Zhou, Y. The microstructure of metastatic bone lesions suggests tumor mediated alterations in bone mineralization. Bone 2025, 201, 117625. doi:10.1016/j.bone.2025.117625
- Alam, M. K.; Zhai, J.; Zou, H.; Chen, Y.; Yang, M. Cancer Cells Traverse Faster in Confined Space by Modifying Vimentin filaments With Nuclear Deformation and Promoting the Growth of Desired Tumor Spheroids. Advanced Materials Interfaces 2025. doi:10.1002/admi.202400754
- Zhou, G.; Wang, C.; Wu, C.; Zhang, W. A fitted model for calculating cellular viscoelastic parameters. Journal of biomechanics 2025, 190, 112878. doi:10.1016/j.jbiomech.2025.112878
- Moore, C. P.; Ghasemi, F.; Berret, J.-F. Simulating magnetic rotational spectroscopy: a novel approach to intracellular rheology of adherent cells. Cold Spring Harbor Laboratory 2025. doi:10.1101/2025.07.07.663618
- Johnson, A. M.; Froman-Glover, C.; Mistry, A.; Yaddanapudi, K.; Chen, J. The impact of compression and confinement in tumor growth and progression: emerging concepts in cancer mechanobiology. Frontiers in Materials 2025, 12. doi:10.3389/fmats.2025.1492438
- Huang, N.; Cao, X.; Li, Z.; Wang, H.; Zhao, W.; Shi, J. Application of mean maximum Young's modulus value as a new parameter for differential diagnosis of prostate diseases. Scientific reports 2025, 15, 3832. doi:10.1038/s41598-025-88263-2
- Markl, A. M.; Nieder, D.; Sandoval-Bojorquez, D. I.; Taubenberger, A.; Berret, J.-F.; Yakimovich, A.; Oliveros-Mata, E. S.; Baraban, L.; Dubrovska, A. Heterogeneity of tumor biophysical properties and their potential role as prognostic markers. Cancer Heterogeneity and Plasticity 2024. doi:10.47248/chp2401020011
- Lai, A.; Hinz, S.; Dong, A.; Lustig, M.; LaBarge, M. A.; Sohn, L. L. Multi-Zone Visco-Node-Pore Sensing: A Microfluidic Platform for Multi-Frequency Viscoelastic Phenotyping of Single Cells. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2406013. doi:10.1002/advs.202406013
- Massey, A.; Stewart, J.; Smith, C.; Parvini, C.; McCormick, M.; Do, K.; Cartagena-Rivera, A. X. Mechanical properties of human tumour tissues and their implications for cancer development. Nature reviews. Physics 2024, 6, 269–282. doi:10.1038/s42254-024-00707-2
- Samaržija, I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023, 12, 79. doi:10.3390/biomedicines12010079
- Zeng, J.; Zhang, Y.; Xu, R.; Chen, H.; Tang, X.; Zhang, S.; Yang, H. Nanomechanical-based classification of prostate tumor using atomic force microscopy. The Prostate 2023, 83, 1591–1601. doi:10.1002/pros.24617
- Moharamipour, S.; Aminifar, M.; Foroughi-Gilvaee, M. R.; Faranoush, P.; Mahdavi, R.; Abadijoo, H.; Parniani, M.; Abbasvandi, F.; Mansouri, S.; Abdolahad, M. Hydroelectric actuator for 3-dimensional analysis of electrophoretic and dielectrophoretic behavior of cancer cells; suitable in diagnosis and invasion studies. Biomaterials advances 2023, 151, 213476. doi:10.1016/j.bioadv.2023.213476