Cite the Following Article
Plasmonic nanotechnology for photothermal applications – an evaluation
A. R. Indhu, L. Keerthana and Gnanaprakash Dharmalingam
Beilstein J. Nanotechnol. 2023, 14, 380–419.
https://doi.org/10.3762/bjnano.14.33
How to Cite
Indhu, A. R.; Keerthana, L.; Dharmalingam, G. Beilstein J. Nanotechnol. 2023, 14, 380–419. doi:10.3762/bjnano.14.33
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 10.8 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Singh, R.; Thakur, A.; Lo, R.; Jayaramulu, K.; Siddhanta, S. MXene‐Mediated Charge Modulation in Plasmonic Metal‐Semiconductor Heterojunctions for Photo‐Induced Enhanced Raman Spectroscopy. Small 2025. doi:10.1002/smll.202503180
- Ali, M. A.; Irshad, M. S.; Maqsood, G.; Arshad, N.; Aslam, N.; Asghar, M. S.; Shakoor, B.; Hussain, I.; Younis, H.; Mei, T.; Dao, V.-D.; Wang, X. Advances in Flat-Band Structures for Enhanced Photothermal Conversion Efficiency: Design, Mechanism, and Complementary Applications. Nano Energy 2025, 111297. doi:10.1016/j.nanoen.2025.111297
- Alali, F. A. Geometric Representation of Tori-Based Nanoframes for Robust Resonance in NIR-II: A Numerical Study. Plasmonics 2025. doi:10.1007/s11468-025-03116-y
- Butt, I. A.; Yin, P.; Chen, N.; Zhang, W. α-Fe Nanoparticles and Multiwalled Carbon Nanotubes Composite with Improved Photothermal Conversion Efficiency for Tumor Therapy. ACS applied bio materials 2025. doi:10.1021/acsabm.5c00772
- Hasan, N.; Bari, G. A. K. M. R.; Jeong, J.-H. Emerging Material Design Trends in Photothermal Water Vapor Generation. International Journal of Energy Research 2025, 2025. doi:10.1155/er/9016908
- Chang, T.-H.; Altama, A. K.; Wang, J.-T.; Yiu, P.; Chu, J. P. A highly-ordered close-packed metallic nanotube array for surface-enhanced Raman scattering. Nanoscale 2025, 17, 13685–13697. doi:10.1039/d4nr05150e
- Kannan, K.; Sivaperumal, P. Antibacterial Efficacy Against Urinary Tract Infection (UTI) Pathogens and Free Radical Scavenging Potential of Marine Algae Sargassum wightii Mediated Copper Nanoparticles. BioNanoScience 2025, 15. doi:10.1007/s12668-025-02007-0
- Faris, V. M.; Hamad, S. M.; Barzinjy, A. A.; Khan, M. M.; Shaikhah, D. Harvesting thermal energy with green-synthesised copper oxide / silver nanocomposites. International Journal of Sustainable Energy 2025, 44. doi:10.1080/14786451.2025.2481969
- Tran, V. A.; Vo, T. T. T.; Thanh, N. C.; Tran, T. D.; Tran, T. N. A. Lipid nanoparticles in medicine: advances in diagnostics, therapeutics, and future directions. Nano Futures 2025, 9, 12001. doi:10.1088/2399-1984/ada900
- Zanbili, F.; Poursattar Marjani, A. Innovative green and bio-based approaches for photosensitive nanoparticle synthesis: a review on methodologies, characterization, and applications. Micro and Nano Systems Letters 2025, 13. doi:10.1186/s40486-025-00223-7
- Caetano-Zeballos, N.; Aldaz-Caballero, L.; Giráldez-Martínez, J.; Besteiro, L. V.; Quintanilla, M.; Marin, R.; Benayas, A. Plasmonic heating by indium tin oxide nanoparticles: spectrally enabling decoupled near-infrared theranostics. Nanoscale 2025, 17, 4455–4464. doi:10.1039/d4nr04212c
- Ngwenya, S.; Sithole, N. J.; Ramachela, K.; Mthiyane, D. M. N.; Mwanza, M.; Singh, M.; Onwudiwe, D. C. Eco-friendly synthesis of ZnO, CuO, and ZnO/CuO nanoparticles using extract of spent Pleurotus ostreatus substrate, and their antioxidant and anticancer activities. Discover nano 2025, 20, 35. doi:10.1186/s11671-025-04199-6
- Opoku, K. N.; Wei, Y.; Dankwa, C. A. A.; Ni, R.; Wang, Z.; Zhai, L.; Zhang, J.; Ang, E. H.; Yang, F. Advances in photothermal water evaporation: synthesis, mechanisms, and coupled techniques. Energy Materials 2025, 5. doi:10.20517/energymater.2024.60
- Nevárez Martínez, M. C.; Kreft, D.; Grzegorczyk, M.; Mahlik, S.; Narajczyk, M.; Zaleska-Medynska, A.; Morales, D. P.; Hollingsworth, J. A.; Werner, J. H. Numerical Simulation of Light to Heat Conversion by Plasmonic Nanoheaters. Nano letters 2024, 25, 230–235. doi:10.1021/acs.nanolett.4c04872
- Makgale, T. T.; Diale, M.; Kyesmen, P. I. Fabrication and Characterisation of Tin Dioxide-Coated Gold Nanocomposites for Potential Use in Applications of Solar Steam Generation. Nano-Horizons: Journal of Nanosciences and Nanotechnologies 2024, 3. doi:10.25159/3005-2602/16241
- Hong, S.; Park, J.; Oh, Y.; Cho, H.; Kim, K. Nanotechnology-Based Strategies for Safe and Effective Immunotherapy. Molecules (Basel, Switzerland) 2024, 29, 5855. doi:10.3390/molecules29245855
- Elmi, M.; Zhang, E.; Jahid, A.; Wang, J. Operational energy savings in greenhouses by retrofitting covering plastics with photothermal antimony tin oxide nanocoating. Journal of Cleaner Production 2024, 483, 144242. doi:10.1016/j.jclepro.2024.144242
- Akouibaa, A.; Masrour, R.; Akouibaa, A.; Mordane, S.; Benhamou, M.; Heryanto, H. Optical and thermoplasmonic properties of core (AuxAg1- x)- shell (Au) nanostructures. Nano-Structures & Nano-Objects 2024, 40, 101333. doi:10.1016/j.nanoso.2024.101333
- Mate, N.; Satwani, V.; Pranav; Mobin, S. M. Blazing Carbon Dots: Unfolding its Luminescence Mechanism to Photoinduced Biomedical Applications. Chemistry, an Asian journal 2024, 20, e202401098. doi:10.1002/asia.202401098
- Egil, N. V.; Zagrebaev, A. D.; Medvedev, P. V.; Alexandrov, A. A.; Bagliy, A. P.; Chapek, S. V.; Guda, A. A.; Soldatov, A. V. High-throughput screening of gold nanoparticle synthesis parameters in droplet microfluidics. Mendeleev Communications 2024, 34, 783–785. doi:10.1016/j.mencom.2024.10.005