Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

Mamta Kumari, Amitabha Acharya and Praveen Thaggikuppe Krishnamurthy
Beilstein J. Nanotechnol. 2023, 14, 912–926. https://doi.org/10.3762/bjnano.14.75

Cite the Following Article

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics
Mamta Kumari, Amitabha Acharya and Praveen Thaggikuppe Krishnamurthy
Beilstein J. Nanotechnol. 2023, 14, 912–926. https://doi.org/10.3762/bjnano.14.75

How to Cite

Kumari, M.; Acharya, A.; Krishnamurthy, P. T. Beilstein J. Nanotechnol. 2023, 14, 912–926. doi:10.3762/bjnano.14.75

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 10.4 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Barattini, C.; Volpe, A.; Gori, D.; Lopez, D.; Ventola, A.; Papa, S.; Montanari, M.; Canonico, B. Early Development of an Innovative Nanoparticle-Based Multimodal Tool for Targeted Drug Delivery: A Step-by-Step Approach. Cells 2025, 14, 670. doi:10.3390/cells14090670
  • Guzmán-Sastoque, P.; Rodríguez, C. F.; Monsalve, M. C.; Castellanos, S.; Manrique-Moreno, A.; Reyes, L. H.; Cruz, J. C. Nanotheranostics Revolutionizing Gene Therapy: Emerging Applications in Gene Delivery Enhancement. Journal of Nanotheranostics 2025, 6, 10. doi:10.3390/jnt6020010
  • Curry, S. D.; Bower, B. M.; Saemundsson, S. A.; Goodwin, A. P.; Cha, J. N. Binding affinity and transport studies of engineered photocrosslinkable affibody-enzyme-nanoparticle constructs. Nanoscale advances 2025, 7, 2239–2247. doi:10.1039/d4na00823e
  • Zhang, D.; Zhang, H.; Yang, Y.; Jin, Y.; Chen, Y.; Wu, C. Advancing tissue analysis: Integrating mass tags with mass spectrometry imaging and immunohistochemistry. Journal of proteomics 2025, 316, 105436. doi:10.1016/j.jprot.2025.105436
  • Chen, Q.; Jin, J.; Li, P.; Wang, X.; Wang, Q. Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines 2025, 13, 759. doi:10.3390/biomedicines13030759
  • Soni, S.; Megha, K.; Shah, V. B.; Shah, A. C.; Bhatt, S.; Merja, M.; Khadela, A. Unlocking the therapeutic potential of antibody-drug conjugates in targeting molecular biomarkers in non-small cell lung cancer. Journal of the Egyptian National Cancer Institute 2025, 37, 6. doi:10.1186/s43046-025-00264-4
  • Asad, S.; Ahl, D.; Suárez-López, Y. D. C.; Erdélyi, M.; Phillipson, M.; Teleki, A. Click Chemistry-Based Bioconjugation of Iron Oxide Nanoparticles. Small (Weinheim an der Bergstrasse, Germany) 2025, 21, e2407883. doi:10.1002/smll.202407883
  • Park, W.; Choi, J.; Hwang, J.; Kim, S.; Kim, Y.; Shim, M. K.; Park, W.; Yu, S.; Jung, S.; Yang, Y.; Kweon, D.-H. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS nano 2025, 19, 6412–6425. doi:10.1021/acsnano.4c16562
  • Thanasi, I. A.; Bouloc, N.; McMahon, C.; Wang, N.; Szijj, P. A.; Butcher, T.; Rochet, L. N. C.; Love, E. A.; Merritt, A.; Baker, J. R.; Chudasama, V. Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity. Chemical science 2025, 16, 2763–2776. doi:10.1039/d4sc06500j
  • Bikorimana, J. P.; Farah, R.; Abusarah, J.; Mandl, G. A.; Erregragui, M. A.; Gonçalves, M. P.; Talbot, S.; Matar, P.; Lahrichi, M.; El-Hachem, N.; Rafei, M. Forced intracellular degradation of xenoantigens as a modality for cell-based cancer immunotherapy. iScience 2025, 28, 111957. doi:10.1016/j.isci.2025.111957
  • Kapare, H.; Bhosale, M.; Bhole, R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. Journal of Drug Delivery Science and Technology 2025, 104, 106495. doi:10.1016/j.jddst.2024.106495
  • Abdelhamid, M. S.; Wadan, A.-H. S.; Saad, H. A.; El-Dakroury, W. A.; Hageen, A. W.; Mohammed, D. H.; Mourad, S.; Mohammed, O. A.; Abdel-Reheim, M. A.; Doghish, A. S. Nanoparticle innovations in targeted cancer therapy: advancements in antibody-drug conjugates. Naunyn-Schmiedeberg's archives of pharmacology 2025. doi:10.1007/s00210-024-03764-7
  • Li, K.; Gui, S.; Wang, N.; Li, X.; Zhao, C.; Liu, M.; Zhang, Z. Sequential pH/GSH-responsive stealth nanoparticles for co-delivery of anti-PD-1 antibody and paclitaxel to enhance chemoimmunotherapy of lung cancer. European journal of medicinal chemistry 2025, 285, 117273. doi:10.1016/j.ejmech.2025.117273
  • Kumar, B. V.; Shukla, A.; Ahmed, N.; Solanki, K.; Srivastava, N.; Saraf, S. A.; Meher, N. Antibody drug conjugates integrated with lipid nanocarrier for cancer theranostics. Lipid-Drug Conjugates; Elsevier, 2025; pp 333–363. doi:10.1016/b978-0-443-33382-8.00012-1
  • Singh, D. Graphene Oxide (GO) Layered Bioconjugates: An Effective Strategy for Delivering p53 Gene for Adenocarcinoma. Recent patents on nanotechnology 2025, 19, 568–571. doi:10.2174/0118722105290129240122104901
  • Kumari, M.; Piyongsola; Ravi Naik, M.; Singh Rathore, H.; Kumar Shukla, A.; Iqbal Dar, A.; Ravi Kiran, A. V. V. V.; Kumari, K.; Acharya, A.; Thaggikuppe Krishnamurthy, P. Targeted delivery of DAPT using dual antibody functionalized solid lipid nanoparticles for enhanced anti-tumour activity against triple negative breast cancer. International journal of pharmaceutics 2024, 670, 125142. doi:10.1016/j.ijpharm.2024.125142
  • Jiang, J.; Kaysar, K.; Pan, Y.; Xia, L.; Li, J. A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity. Pharmaceutics 2024, 16, 1591. doi:10.3390/pharmaceutics16121591
  • Parvin, N.; Mandal, T. K.; Joo, S.-W. The Impact of COVID-19 on RNA Therapeutics: A Surge in Lipid Nanoparticles and Alternative Delivery Systems. Pharmaceutics 2024, 16, 1366. doi:10.3390/pharmaceutics16111366
  • Rodponthukwaji, K.; Thongchot, S.; Deureh, S.; Thongkleang, T.; Thaweesuvannasak, M.; Srichan, K.; Srisawat, C.; Thuwajit, P.; Nguyen, K. T.; Tadpetch, K.; Thuwajit, C.; Punnakitikashem, P. Development of cancer-associated fibroblasts-targeting polymeric nanoparticles loaded with 8-O-methylfusarubin for breast cancer treatment. International journal of pharmaceutics: X 2024, 8, 100294. doi:10.1016/j.ijpx.2024.100294
  • Velásquez, F.; Frazao, M.; Diez, A.; Villegas, F.; Álvarez-Bidwell, M.; Rivas-Pardo, J. A.; Vallejos-Vidal, E.; Reyes-López, F.; Toro-Ascuy, D.; Ahumada, M.; Reyes-Cerpa, S. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. Nanomaterials (Basel, Switzerland) 2024, 14, 1658. doi:10.3390/nano14201658
Other Beilstein-Institut Open Science Activities