Cite the Following Article
Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies
Fabio Le Piane, Mario Vozza, Matteo Baldoni and Francesco Mercuri
Beilstein J. Nanotechnol. 2024, 15, 1498–1521.
https://doi.org/10.3762/bjnano.15.119
How to Cite
Le Piane, F.; Vozza, M.; Baldoni, M.; Mercuri, F. Beilstein J. Nanotechnol. 2024, 15, 1498–1521. doi:10.3762/bjnano.15.119
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 9.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mim, J. J.; Rakib, S.; Akter, S.; Nisha, J. R.; Khan, S.; Rahman, S. M. M.; Manik, M. H.; Hossain, N. The emerging role of machine learning in nanomaterials research: applications, challenges, and future directions. Journal of Nanoparticle Research 2025, 27. doi:10.1007/s11051-025-06472-2
- Sarajlić, A.; Banjanović-Mehmedović, L.; Mercuri, F. Vision-Guided Robotic Automation for Materials Informatics: Enabling Autonomous Additive Manufacturing in Self-Driving Laboratories. In 2025 XXX International Conference on Information, Communication and Automation Technologies (ICAT), IEEE, 2025; pp 1–6. doi:10.1109/icat66432.2025.11189288
- Dang, S.; Son, Y.; Kim, B.; Jeong, K.; Park, J.; Cho, H. Converging High-Performance Computing, Artificial Intelligence, and Intelligent Workflows for Next-Generation Innovation. In 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA), IEEE, 2025; pp 1–6. doi:10.1109/acdsa65407.2025.11166486
- Yu, G.; Wang, Z.; Xu, Y.; Sun, Z. J.; Chen, S. From energy to ecology: decarbonization pathways for sustainable high-performance computing through global carbon-energy nexus analysis. Frontiers in Applied Mathematics and Statistics 2025, 11. doi:10.3389/fams.2025.1595365
- Dang, S.; Son, Y.; Kim, B. Converging High-Performance Computing, Artificial Intelligence, and Intelligent Workflows for Next-Generation Innovation. International Journal of Innovative Science and Research Technology 2025, 3448–3455. doi:10.38124/ijisrt/25apr1850
- Thangamalai, M. S.; Desai, D.; Selvaraj, C. Revolutionizing structural biology: AI-driven protein structure prediction from AlphaFold to next-generation innovations. Advances in protein chemistry and structural biology 2025, 147, 1–19. doi:10.1016/bs.apcsb.2025.04.002
- Almeida, F.; Okon, E. Assessing the impact of high-performance computing on digital transformation: benefits, challenges, and size-dependent differences. The Journal of Supercomputing 2025, 81. doi:10.1007/s11227-025-07281-z
- Sharma, M. The Role of Machine Learning in Enhancing Data Science Workflows: A Systematic Review. International Journal of Innovations in Science Engineering And Management 2025, 392–397. doi:10.69968/ijisem.2025v4i1392-397
- Exner, T. E.; Dokler, J.; Friedrichs, S.; Seitz, C.; Bleken, F. L.; Friis, J.; Hagelien, T. F.; Mercuri, F.; Costa, A. L.; Furxhi, I.; Sarimveis, H.; Afantitis, A.; Marvuglia, A.; Larrea-Gallegos, G. M.; Serchi, T.; Serra, A.; Greco, D.; Nymark, P.; Himly, M.; Wiench, K.; Watzek, N.; Schillinger, E.-K.; Gavillet, J.; Lynch, I.; Karwath, A.; Haywood, A. L.; Gkoutos, G. V.; Hischier, R. Going digital to boost safe and sustainable materials innovation markets. The digital safe-and-sustainability-by-design innovation approach of the PINK project. Computational and structural biotechnology journal 2025, 29, 110–124. doi:10.1016/j.csbj.2025.03.019
- Li, J.; Zhang, G.; Li, G.; Zhang, J.; Yang, Z.; Yang, L.; Jiang, S.; Wang, J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discover oncology 2025, 16, 121. doi:10.1007/s12672-025-01897-6