Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

Theo Fromme, Sven Reichenberger, Katharine M. Tibbetts and Stephan Barcikowski
Beilstein J. Nanotechnol. 2024, 15, 638–663. https://doi.org/10.3762/bjnano.15.54

Cite the Following Article

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives
Theo Fromme, Sven Reichenberger, Katharine M. Tibbetts and Stephan Barcikowski
Beilstein J. Nanotechnol. 2024, 15, 638–663. https://doi.org/10.3762/bjnano.15.54

How to Cite

Fromme, T.; Reichenberger, S.; Tibbetts, K. M.; Barcikowski, S. Beilstein J. Nanotechnol. 2024, 15, 638–663. doi:10.3762/bjnano.15.54

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 7.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Baimler, I. V.; Popov, I. A.; Simakin, A. V.; Gudkov, S. V. A Simple Three-Step Method for the Synthesis of Submicron Gold Particles: The Influence of Laser Irradiation Duration, Pulse Energy, Laser Pulse Duration, and Initial Concentration of Nanoparticles in the Colloid. Nanomaterials 2026, 16, 79. doi:10.3390/nano16020079
  • Khatmi, G.; Filipas, I.; Bielskė, K.; Šmits, K.; Peckus, D.; Klinavičius, T.; Siddig, A. A.; Fitl, P.; Novotný, M.; More-Chevalier, J.; Tamulevičienė, A.; Simanavičius, M.; Tamulevičius, T. Laser-made nanoparticle alternatives and machine learning-based image analysis for enhancing lateral flow immunoassay detection of bacterial β-lactamases. Sensors and Actuators B: Chemical 2026, 446, 138713. doi:10.1016/j.snb.2025.138713
  • Amosov, A.; Gurbatov, S. O.; Shevlyagin, A. V.; Pilnik, A.; Modin, E.; Khubezhov, S.; Menchinskaya, E. S.; Gorpenchenko, T. Y.; Aminin, D. L.; Kuchmizhak, A. A. Ultrafast laser synthesis of NIR-absorbing Au-TiO2 nanoagents for photothermal theranostics. Colloids and surfaces. B, Biointerfaces 2025, 259, 115359. doi:10.1016/j.colsurfb.2025.115359
  • Fieser, D.; Yin, K.; Shortt, H.; Dewanjee, U.; Steingrimsson, B.; Ivanov, I. N.; Burns, J.; Liaw, P. K.; Zuo, J.-M.; Hu, A. Surface Nanostructure Control and Thermodynamic Stability Analysis of Femtosecond Laser-Ablated CuCoMn1.75NiFe0.25 Nanoparticles. Langmuir : the ACS journal of surfaces and colloids 2025, 41, 34173. doi:10.1021/acs.langmuir.5c05617
  • Nallathambi, V.; Kim, S.-H.; Mingers, A. M.; Ebbinghaus, P.; Gault, B.; Reichenberger, S.; Raabe, D.; Barcikowski, S. Kinetically Controlling Surface Atom Arrangements in Thermally Robust, Amorphous High-Entropy Alloy Nanoparticles by Solvent Selection. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, 13, e10537. doi:10.1002/advs.202510537
  • Stuckert, R.; Pohl, F.; Shkodich, N.; Prymak, O.; Koch, N.; Schürmann, U.; Farle, M.; Kienle, L.; Barcikowski, S.; Rehbock, C. Amorphization of laser-fabricated ignoble high-entropy alloy nanoparticles and its impact on surface composition and electrochemistry. Faraday discussions 2025. doi:10.1039/d5fd00087d
  • Shkodich, N. F.; Smoliarova, T.; Nallathambi, V.; Feitosa, L. M.; Adabifiroozjaei, E.; Tarasov, I.; Grzywa, M.; Gault, B.; Reichenberger, S.; Molina-Luna, L.; Barcikowski, S.; Farle, M. Nanocrystalline CoMnFeNiGa high entropy alloys: room temperature ferromagnetism bridging the gap from bulk to nano. Faraday discussions 2025. doi:10.1039/d5fd00080g
  • Kostin, D. Multi-Wavelength Laser Beam Combination for Biophotonic Synthesis of Biodegradable Electronics. In 2025 IEEE 6th KhPI Week on Advanced Technology (KhPIWeek), IEEE, 2025; pp 1–4. doi:10.1109/khpiweek61436.2025.11288669
  • Linz, N.; Freidank, S.; Liang, X.-X.; Vogel, A. Laser-induced plasma formation and cavitation in water: from nanoeffects to extreme states of matter. Reports on progress in physics. Physical Society (Great Britain) 2025, 88, 88501. doi:10.1088/1361-6633/adedb3
  • Stuckert, R.; Pohl, F.; Prymak, O.; Schürmann, U.; Rehbock, C.; Kienle, L.; Barcikowski, S. Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration. Beilstein journal of nanotechnology 2025, 16, 1141–1159. doi:10.3762/bjnano.16.84
  • Spellauge, M.; Redka, D.; Mo, M.; Song, C.; Huber, H. P.; Plech, A. Time-resolved probing of laser-induced nanostructuring processes in liquids. Beilstein journal of nanotechnology 2025, 16, 968–1002. doi:10.3762/bjnano.16.74
  • Lee, C.-G.; Nallathambi, V.; Kang, T.; Aota, L. S.; Reichenberger, S.; El-Zoka, A. A.; Choi, P.-P.; Gault, B.; Kim, S.-H. Magnetocaloric effect of Fe47.5Ni37.5Mn15 bulk and nanoparticles for room temperature magnetic refrigeration. Journal of Alloys and Compounds 2025, 1036, 181743. doi:10.1016/j.jallcom.2025.181743
  • Koch, N. G.; Poschmann, M.; Heumann, S.; Puthussery, A. J.; Čolić, V.; Barcikowski, S.; Reichenberger, S. Origin and Role of Reactive Oxygen Species in UV‐PUDEL Irradiation of Platinum Nanoparticles: Effects on Surface Groups and Electrochemical Activity. ChemCatChem 2025, 17. doi:10.1002/cctc.202500622
  • Tselikov, G. I.; Minnekhanov, A. A.; Ermolaev, G. A.; Tikhonowski, G. V.; Kazantsev, I. S.; Dyubo, D. V.; Panova, D. A.; Tselikov, D. I.; Popov, A. A.; Mazitov, A. B.; Smirnov, S.; Lipilin, F.; Ahsan, U.; Orekhov, N. D.; Kruglov, I.; Syuy, A. V.; Kabashin, A. V.; Chichkov, B. N.; Sofer, Z.; Arsenin, A. V.; Novoselov, K. S.; Volkov, V. S. Tunable Nanostructuring for van der Waals Materials. ACS nano 2025, 19, 22820–22836. doi:10.1021/acsnano.5c00546
  • U Cortes, F. R.; Falomir, E.; Doñate-Buendía, C.; Mínguez-Vega, G. A Review on Pulsed Laser-Based Synthesis of Carbon and Graphene Quantum Dots in Liquids: From Fundamentals, Chemistry to Bio Applications and Beyond. The journal of physical chemistry. C, Nanomaterials and interfaces 2025, 129, 10378–10414. doi:10.1021/acs.jpcc.5c01343
  • Subedi, R.; Ruiz-Zepeda, F.; Woli, Y. B.; Hoang, T. B.; Chaste, J.; Herth, E.; Guisbiers, G. Strongly confined Te quantum dots as building blocks for single photon sources. Materials Today Quantum 2025, 6, 100034. doi:10.1016/j.mtquan.2025.100034
  • Subedi, R.; Burningham, M.; Ruiz-Zepeda, F.; Zhou, Q.; Lu, X.; Guisbiers, G. Strongly Confined Bi2Se3 Quantum Dots via Pulsed Laser Ablation in Liquids. ACS omega 2025, 10, 23214–23221. doi:10.1021/acsomega.5c01222
  • Coviello, V.; Reffatto, C.; Fawaz, M. W.; Mahler, B.; Sollier, A.; Lukic, B.; Rack, A.; Amans, D.; Amendola, V. Time-Resolved Dynamics of Laser Ablation in Liquid with Gas-Evolving Additives: Toward Molding the Atomic Structure of Nonequilibrium Nanoalloys. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, 12, e2416035. doi:10.1002/advs.202416035
  • Wilsey, M. K.; Taseska, T.; Schultz, L. R.; Perez, E.; Müller, A. M. Fabrication of Surfactant-Free Mixed-Metal Nanocatalyst-Carbon Fiber Paper Composites via Pulsed Laser Grafting. The journal of physical chemistry. C, Nanomaterials and interfaces 2025, 129, 8730–8746. doi:10.1021/acs.jpcc.5c00641
  • Peckus, D.; Mykolaitis, J.; Tamulevičienė, A.; Klimaitė, G.; Khatmi, G.; Juodėnas, M.; Lazauskas, A.; Tamulevičius, S.; Tamulevičius, T. Optimization of process parameters for the photophysical synthesis of colloidal Ag, Au, and Cu nanoparticles using femtosecond laser ablation in water. Optical Materials 2025, 161, 116796. doi:10.1016/j.optmat.2025.116796
Other Beilstein-Institut Open Science Activities