Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

Petra Ditsche-Kuru, Erik S. Schneider, Jan-Erik Melskotte, Martin Brede, Alfred Leder and Wilhelm Barthlott
Beilstein J. Nanotechnol. 2011, 2, 137–144. https://doi.org/10.3762/bjnano.2.17

Cite the Following Article

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention
Petra Ditsche-Kuru, Erik S. Schneider, Jan-Erik Melskotte, Martin Brede, Alfred Leder and Wilhelm Barthlott
Beilstein J. Nanotechnol. 2011, 2, 137–144. https://doi.org/10.3762/bjnano.2.17

How to Cite

Ditsche-Kuru, P.; Schneider, E. S.; Melskotte, J.-E.; Brede, M.; Leder, A.; Barthlott, W. Beilstein J. Nanotechnol. 2011, 2, 137–144. doi:10.3762/bjnano.2.17

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tang, Z. Q.; Tian, T.; Molino, P. J.; Skvortsov, A.; Ruan, D.; Ding, J.; Li, Y. Recent Advances in Superhydrophobic Materials Development for Maritime Applications. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, e2308152. doi:10.1002/advs.202308152
  • Bleckmann, H. The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 2023. doi:10.1007/s00359-023-01681-3
  • Fan, Y.; Tan, Y.; Dou, Y.; Huang, S.; Tian, X. Reducing the contact time of bouncing droplets on superhydrophobic surfaces: Foundations, strategies and applications. Chemical Engineering Journal 2023, 476, 146485. doi:10.1016/j.cej.2023.146485
  • Mao, J.; Cheng, Q. Notonecta glauca-inspired smart devices. Matter 2023, 6, 2102–2105. doi:10.1016/j.matt.2023.05.031
  • Xie, J.; Yao, C.; Shi, Z.; Wang, J.; Jiang, L. Bioinspired Drag Reduction of Cavities Induced by Janus Nanostructure Interfaces on Hydrophobic Spheres Plunging into Water with a Low Speed. Advanced Materials Interfaces 2023, 10. doi:10.1002/admi.202202372
  • Buffry, A. D.; Kittelmann, S.; McGregor, A. P. Characterisation of the role and regulation of Ultrabithorax in sculpting fine-scale leg morphology. Frontiers in cell and developmental biology 2023, 11, 1119221. doi:10.3389/fcell.2023.1119221
  • Zhang, L.; Huang, Z.; Cai, W.; Xue, X.; Min, X.; Zhang, H.; Zhang, Z. Hairy superhydrophobic surfaces with excellent mechanical robustness, underwater stability and drag-reduction property. Progress in Organic Coatings 2023, 174, 107323. doi:10.1016/j.porgcoat.2022.107323
  • Bello, E.; Chen, Y.; Alleyne, M. Staying Dry and Clean: An Insect's Guide to Hydrophobicity. Insects 2022, 14, 42. doi:10.3390/insects14010042
  • Mail, M.; Walheim, S.; Schimmel, T.; Barthlott, W.; Gorb, S. N.; Heepe, L. Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures. Beilstein journal of nanotechnology 2022, 13, 1370–1379. doi:10.3762/bjnano.13.113
  • Schell, F.; Alamri, S.; Steege, T.; Zwahr, C.; Kunze, T.; Lasagni, A. On the wetting behavior of laser-microtextured stainless steel using Direct Laser Interference Patterning. Surface and Coatings Technology 2022, 447, 128869. doi:10.1016/j.surfcoat.2022.128869
  • Zhao, Y.; Xu, Z.; Gong, L.; Yang, S.; Zeng, H.; He, C.; Ge, D.; Yang, L. Recoverable Underwater Superhydrophobicity from a Fully Wetted State via Dynamic Air Spreading. iScience 2021, 24, 103427. doi:10.1016/j.isci.2021.103427
  • Baeckens, S.; Temmerman, M.; Gorb, S. N.; Neto, C.; Whiting, M. J.; Van Damme, R. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. The Journal of experimental biology 2021, 224. doi:10.1242/jeb.242939
  • Wang, Y.; Meng, J.; Wang, S. Recent Progress of Bioinspired Scalephobic Surfaces with Specific Barrier Layers. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 8639–8657. doi:10.1021/acs.langmuir.1c01282
  • Liu, X.; Trosseille, J.; Mongruel, A.; Marty, F.; Basset, P.; Laurent, J.; Royon, L.; Cui, T.; Beysens, D.; Bourouina, T. Tailoring silicon for dew water harvesting panels. iScience 2021, 24, 102814. doi:10.1016/j.isci.2021.102814
  • Suzuki, C.; Takaku, Y.; Suzuki, H.; Ishii, D.; Shimozawa, T.; Nomura, S.; Shimomura, M.; Hariyama, T. Hydrophobic-hydrophilic crown-like structure enables aquatic insects to reside effectively beneath the water surface. Communications biology 2021, 4, 708. doi:10.1038/s42003-021-02228-5
  • Cai, Y.; Bing, W.; Chen, C.; Chen, Z. Gaseous Plastron on Natural and Biomimetic Surfaces for Resisting Marine Biofouling. Molecules (Basel, Switzerland) 2021, 26, 2592. doi:10.3390/molecules26092592
  • Zhao, Y.; Xu, Z.; Gong, L.; Yang, S.; Zeng, H.; He, C.; Ge, D.; Yang, L. Recoverable Underwater Superhydrophobicity From a Fully Wetted State via Dynamic Air Spreading. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3917208
  • Feldmann, D.; Das, R.; Pinchasik, B.-E. How Can Interfacial Phenomena in Nature Inspire Smaller Robots. Advanced Materials Interfaces 2020, 8, 2001300. doi:10.1002/admi.202001300
  • Kovalev, A.; Rebora, M.; Salerno, G.; Gorb, S. N. Air-entrapping capacity in the hair coverage of Malacosoma castrensis (Lasiocampidae: Lepidoptera) caterpillar: a case study. The Journal of experimental biology 2020, 223. doi:10.1242/jeb.225029
  • Wang, L.; Wang, R.; Wang, J.; Wong, T. S. Compact nanoscale textures reduce contact time of bouncing droplets. Science advances 2020, 6, eabb2307. doi:10.1126/sciadv.abb2307
Other Beilstein-Institut Open Science Activities