The role of the cantilever in Kelvin probe force microscopy measurements

George Elias, Thilo Glatzel, Ernst Meyer, Alex Schwarzman, Amir Boag and Yossi Rosenwaks
Beilstein J. Nanotechnol. 2011, 2, 252–260. https://doi.org/10.3762/bjnano.2.29

Cite the Following Article

The role of the cantilever in Kelvin probe force microscopy measurements
George Elias, Thilo Glatzel, Ernst Meyer, Alex Schwarzman, Amir Boag and Yossi Rosenwaks
Beilstein J. Nanotechnol. 2011, 2, 252–260. https://doi.org/10.3762/bjnano.2.29

How to Cite

Elias, G.; Glatzel, T.; Meyer, E.; Schwarzman, A.; Boag, A.; Rosenwaks, Y. Beilstein J. Nanotechnol. 2011, 2, 252–260. doi:10.3762/bjnano.2.29

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Henderson, R. D. E.; Mei, N.; Xu, Y.; Gaikwad, R.; Wettig, S.; Leonenko, Z. Nanoscale Structure of Lipid–Gemini Surfactant Mixed Monolayers Resolved with AFM and KPFM Microscopy. Nanomaterials 2024, 14, 572. doi:10.3390/nano14070572
  • Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
  • Wu, S.; Yang, X.; Huang, H.; Shen, Z.; Xue, Y.; Yang, H.; Wang, L.; Xu, F.; Wang, X.; Ge, W.; Shen, B. The movement of the Fermi level in heavily C doped GaN. Japanese Journal of Applied Physics 2022, 61, 90901–090901. doi:10.35848/1347-4065/ac8535
  • Glatzel, T.; Gysin, U.; Meyer, E. Kelvin probe force microscopy for material characterization. Microscopy (Oxford, England) 2022, 71, i165–i173. doi:10.1093/jmicro/dfab040
  • Mukherjee, A.; Gnaim, M.; Tov, I. S.; Hargreaves, L.; Hayon, J.; Shluger, A. L.; Rosenwaks, Y. Ultrasensitive hydrogen detection by electrostatically formed silicon nanowire decorated by palladium nanoparticles. Sensors and Actuators B: Chemical 2021, 346, 130509. doi:10.1016/j.snb.2021.130509
  • Stan, G.; Namboodiri, P. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode. Beilstein journal of nanotechnology 2021, 12, 1115–1126. doi:10.3762/bjnano.12.83
  • Lai, J.; Wang, C.; Xing, Z.; Lu, S.; Chen, Q.; Chen, L. Quantitative amplitude-modulation scanning Kelvin probe microscopy via the second eigenmode excitation. Ultramicroscopy 2021, 230, 113399. doi:10.1016/j.ultramic.2021.113399
  • Lai, T.; Guo, M.; Chen, Y. Evolution of millimetric-range electrostatic forces between an AFM cantilever and a charged dielectric via suspended force curves. Journal of Adhesion 2021, 1–18.
  • Lai, T.; Guo, M.; Chen, Y. Evolution of millimetric-range electrostatic forces between an AFM cantilever and a charged dielectric via suspended force curves. The Journal of Adhesion 2021, 98, 2277–2294. doi:10.1080/00218464.2021.1969922
  • Chlanda, A.; Walejewska, E.; Kowiorski, K.; Heljak, M.; Swieszkowski, W.; Lipińska, L. Investigation into morphological and electromechanical surface properties of reduced-graphene-oxide-loaded composite fibers for bone tissue engineering applications: A comprehensive nanoscale study using atomic force microscopy approach. Micron (Oxford, England : 1993) 2021, 146, 103072. doi:10.1016/j.micron.2021.103072
  • Yasakau, K. A. Application of AFM-Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys. Corrosion and Materials Degradation 2020, 1, 345–372. doi:10.3390/cmd1030017
  • Stan, G. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy. Nanotechnology 2020, 31, 385706. doi:10.1088/1361-6528/ab9af0
  • Xu, J.; Bai, G.; Li, J.; Li, W. Inhomogeneous probe surface induced effect in Kelvin probe force microscopy. Journal of Applied Physics 2020, 127, 184302. doi:10.1063/5.0005276
  • Doi, A.; Nakajima, M.; Masuda, S.; Satoh, N.; Yamamoto, H. Cross-sectional observation in nanoscale for Si power MOSFET by atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy. Japanese Journal of Applied Physics 2019, 58, SIIA04. doi:10.7567/1347-4065/ab1642
  • Kratzer, M.; Dimitriev, O. P.; Fedoryak, A. N.; Osipyonok, N. M.; Balaz, P.; Balaz, M.; Tešínsky, M.; Teichert, C. The role of the probe tip material in distinguishing p- and n-type domains in bulk heterojunction solar cells by atomic force microscopy based methods. Journal of Applied Physics 2019, 125, 185305. doi:10.1063/1.5082636
  • Schulzendorf, M.; Hinaut, A.; Kisiel, M.; Jöhr, R.; Pawlak, R.; Restuccia, P.; Meyer, E.; Righi, M. C.; Glatzel, T. Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide. ACS nano 2019, 13, 5485–5492. doi:10.1021/acsnano.9b00278
  • Shi, X.; Lu, C.; Xu, G.; Yang, G.; Lu, N.; Ji, Z.; Di, G.; Li, L.; Liu, M. Thickness of accumulation layer in amorphous indium-gallium-zinc-oxide thin-film transistors by Kelvin Probe Force Microscopy. Applied Physics Letters 2019, 114, 073501. doi:10.1063/1.5057719
  • Collins, L.; Kilpatrick, J. I.; Kalinin, S. V.; Rodriguez, B. J. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review. Reports on progress in physics. Physical Society (Great Britain) 2018, 81, 086101. doi:10.1088/1361-6633/aab560
  • Salerno, M.; Dante, S. Scanning Kelvin Probe Microscopy: Challenges and Perspectives towards Increased Application on Biomaterials and Biological Samples. Materials (Basel, Switzerland) 2018, 11, 951. doi:10.3390/ma11060951
  • Xu, J.; Chen, D.; Li, W.; Xu, J. Surface potential extraction from electrostatic and Kelvin-probe force microscopy images. Journal of Applied Physics 2018, 123, 184301. doi:10.1063/1.5023760
Other Beilstein-Institut Open Science Activities