Distinction of nucleobases – a tip-enhanced Raman approach

Regina Treffer, Xiumei Lin, Elena Bailo, Tanja Deckert-Gaudig and Volker Deckert
Beilstein J. Nanotechnol. 2011, 2, 628–637. https://doi.org/10.3762/bjnano.2.66

Cite the Following Article

Distinction of nucleobases – a tip-enhanced Raman approach
Regina Treffer, Xiumei Lin, Elena Bailo, Tanja Deckert-Gaudig and Volker Deckert
Beilstein J. Nanotechnol. 2011, 2, 628–637. https://doi.org/10.3762/bjnano.2.66

How to Cite

Treffer, R.; Lin, X.; Bailo, E.; Deckert-Gaudig, T.; Deckert, V. Beilstein J. Nanotechnol. 2011, 2, 628–637. doi:10.3762/bjnano.2.66

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rusciano, G. Plasmon-enhanced Raman spectroscopy: Principles and applications. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 300–316. doi:10.1016/b978-0-323-90800-9.00041-x
  • Safar, W.; Azziz, A.; Edely, M.; Lamy de la Chapelle, M. Conventional Raman, SERS and TERS Studies of DNA Compounds. Chemosensors 2023, 11, 399. doi:10.3390/chemosensors11070399
  • Itoh, T.; Procházka, M.; Dong, Z.-C.; Ji, W.; Yamamoto, Y. S.; Zhang, Y.; Ozaki, Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical reviews 2023, 123, 1552–1634. doi:10.1021/acs.chemrev.2c00316
  • Vaitiekūnaitė, D.; Dodoo, D.; Snitka, V. Traceability of bilberries (Vaccinium myrtillus L.) of the Baltic-Nordic region using surface-enhanced Raman spectroscopy (SERS): DFT simulation-based DNA analysis. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2022, 288, 122192. doi:10.1016/j.saa.2022.122192
  • Bonhommeau, S.; Cooney, G. S.; Huang, Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chemical Society reviews 2022, 51, 2416–2430. doi:10.1039/d1cs01039e
  • Khoje, Z. B.; kumarVootla, S.; David, M. Brain DNA damage analysis in pesticide exposed wistar albino rats (Rattus norvegicus): a chemometric approach. Journal of biomolecular structure & dynamics 2022, 41, 2211–2220. doi:10.1080/07391102.2022.2029566
  • Lipiec, E.; Sofińska, K.; Seweryn, S.; Wilkosz, N.; Szymonski, M. Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy. Molecules (Basel, Switzerland) 2021, 26, 6476. doi:10.3390/molecules26216476
  • Muntean, C. M.; Dina, N. E.; Bratu, I.; Fǎlǎmaş, A.; Niţu, S.; Halmagyi, A.; Coste, A. Effects of Femtosecond UV Laser Pulses on the Structure and Surface Dynamics of Medicinal Plants DNA, Monitored by Surface-Enhanced Raman Spectroscopy. Journal of Molecular Structure 2021, 1239, 130482. doi:10.1016/j.molstruc.2021.130482
  • Berneschi, S.; D’Andrea, C.; Baldini, F.; Banchelli, M.; de Angelis, M.; Pelli, S.; Pini, R.; Pugliese, D.; Boetti, N. G.; Janner, D.; Milanese, D.; Giannetti, A.; Matteini, P. Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Analytical and bioanalytical chemistry 2021, 413, 6171–6182. doi:10.1007/s00216-021-03418-0
  • Nazarudin, N. F. F. B.; Rizan, N.; Talik, N. A.; Periasamy, V.; Nakajima, H.; Rahman, S. A.; Goh, B. T. Fabrication of DNA/NiSi NWs and Ag NPs-NiSi NWs-based Schottky diodes for DNA detection with fast response time. Journal of Materials Science: Materials in Electronics 2021, 32, 7889–7905. doi:10.1007/s10854-021-05513-5
  • Li, Z.; Kurouski, D. Nanoscale structural characterization of plasmon-driven reactions. Nanophotonics 2021, 10, 1657–1673. doi:10.1515/nanoph-2020-0647
  • Zhang, Y.; Zhang, Y.; Dong, Z.-C. Scanning Raman picoscopy: Ångström-resolved tip-enhanced Raman spectromicroscopy†. Chinese Journal of Chemical Physics 2021, 34, 1–14. doi:10.1063/1674-0068/cjcp2102027
  • Kurouski, D.; Dazzi, A.; Zenobi, R.; Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chemical Society reviews 2020, 49, 3315–3347. doi:10.1039/c8cs00916c
  • Sofińska, K.; Wilkosz, N.; Szymonski, M.; Lipiec, E. Molecular Spectroscopic Markers of DNA Damage. Molecules (Basel, Switzerland) 2020, 25, 561. doi:10.3390/molecules25030561
  • You, X.; Casper, C. B.; Lentz, E. E.; Erie, D. A.; Atkin, J. M. Fabrication of a Biocompatible Mica/Gold Surface for Tip-Enhanced Raman Spectroscopy. Chemphyschem : a European journal of chemical physics and physical chemistry 2020, 21, 188–193. doi:10.1002/cphc.201901002
  • Zhang, S.; Bertens, C. J. F.; Erckens, R. J.; van den Biggelaar, F. J.; Berendschot, T. T. J. M.; Webers, C. A.; Nuijts, R. M.; Gijs, M. In vitro and in vivo datasets of topically applied ketorolac tromethamine in aqueous humor using Raman spectroscopy. Data in brief 2019, 27, 104694. doi:10.1016/j.dib.2019.104694
  • Lartey, J. A.; Harms, J. P.; Frimpong, R.; Mulligan, C. C.; Driskell, J. D.; Kim, J.-H. Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy. RSC advances 2019, 9, 32535–32543. doi:10.1039/c9ra05399a
  • Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; de Abajo, F. J. G.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C. W.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhöfer, T. G.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Pérez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlücker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzán, L. M. Present and Future of Surface-Enhanced Raman Scattering. ACS nano 2019, 14, 28–117. doi:10.1021/acsnano.9b04224
  • Gibson, K. F.; Kazarian, S. G.; Kharintsev, S. S. doi:10.1002/9780470027318.a9278.pub2
  • Kobierski, J.; Lipiec, E. DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage. Journal of Molecular Structure 2019, 1178, 162–168. doi:10.1016/j.molstruc.2018.10.032


  • DILL TYLER JAMISON; TAO ANDREA RAE. Nanoantenna scanning probe tip, and fabrication methods. US 10012674 B2, July 3, 2018.
  • CHEN DA; ZONG JING; LI QIFENG. Near field optical technology-based single-molecule DNA nondestructive detection chip. CN 107058082 A, Aug 18, 2017.
  • DECKERT VOLKER; ZEISBERGER MATTHIAS. Method for determining sequence of biopolymers e.g. single stranded DNA, involves comparing signals of polymer strand with experimental determined signals until unique sequence with least significant average deviation is determined. DE 102012024203 A1, June 6, 2013.
Other Beilstein-Institut Open Science Activities