Cite the Following Article
An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface
Wenjing Hong, Hennie Valkenier, Gábor Mészáros, David Zsolt Manrique, Artem Mishchenko, Alexander Putz, Pavel Moreno García, Colin J. Lambert, Jan C. Hummelen and Thomas Wandlowski
Beilstein J. Nanotechnol. 2011, 2, 699–713.
https://doi.org/10.3762/bjnano.2.76
How to Cite
Hong, W.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. Beilstein J. Nanotechnol. 2011, 2, 699–713. doi:10.3762/bjnano.2.76
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wu, S.; Liu, S.; Cai, Z.; Sun, B.; Liu, X.; Shi, L.; Lambert, C. J.; Zhang, H. Breaking Interference‐Driven Reversal Currents to Boost Single‐Molecule Conductance. Angewandte Chemie 2025. doi:10.1002/ange.202520318
- Wu, S.-D.; Liu, S.-T.; Cai, Z.-M.; Sun, B.; Liu, X.-D.; Shi, L.-Y.-Y.; Lambert, C. J.; Zhang, H.-L. Breaking Interference-Driven Reversal Currents to Boost Single-Molecule Conductance. Angewandte Chemie (International ed. in English) 2025, e202520318. doi:10.1002/anie.202520318
- Yamane, A.; Fujii, S.; Nishino, T. Geometry-Dependent Suppression of Quantum Interference in Thiolate- and Nitrile-Terminated Naphthalene Junctions. ACS omega 2025, 10, 42102–42108. doi:10.1021/acsomega.5c08235
- Yuan, S.; Chen, Y.; Wang, X.; Zhao, D.; Gao, T.; Wei, C.; Chen, C.; Yang, Y.; Hong, W. Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters 2025, 36, 110816. doi:10.1016/j.cclet.2025.110816
- Wu, J.; Zhang, Y.; Yang, M.; Bai, J.; Hong, W. Observation of quantum interference in single–molecule junctions via electrochemical gating. Current Opinion in Electrochemistry 2025, 51, 101688. doi:10.1016/j.coelec.2025.101688
- Gueddida, S.; Lazaar, K.; Aouaini, F.; Al-mugren, K. S.; Lebègue, S. Exploring the electronic and optical properties of anthraquinone derivatives for photovoltaic applications: A computational study. Journal of Applied Physics 2025, 137. doi:10.1063/5.0249614
- Han, C.; Chen, C.; Shi, H.; Chen, W.; Sun, W.; Li, B. Advances in single-molecule electrical transport studies of peptides. Physical chemistry chemical physics : PCCP 2025, 27, 8026–8038. doi:10.1039/d5cp00128e
- Li, H.-X.; Liu, J.-Y.; Geng, B.-J.; Qiu, S.-J.; Chen, Z.-N.; Yang, Y.; Zhang, Q.-C. Nanoarchitectonics for Regulating Molecular Conductance by Multi-Channel Structure. Chemistry, an Asian journal 2025, 20, e202401774. doi:10.1002/asia.202401774
- Wang, R.; Li, Y.; Yan, S.; Zhang, Z.; Lian, C.; Tian, H.; Li, H. Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field. Journal of the American Chemical Society 2025, 147, 2841–2848. doi:10.1021/jacs.4c16530
- Fujii, S.; Yamane, A.; Goto, H.; Nishino, T. Impact of π-electron delocalization on quantum interference in single-molecule junctions of benzene derivatives. Physical Chemistry Chemical Physics 2025. doi:10.1039/d5cp03176a
- Cai, Z.-Y.; Ma, Z.-W.; Jin, H.; Wang, J.-Z.; Chen, L.-K.; Wu, T.-R.; Sajid, Z.; Zhou, J.-Z.; Wu, D.-Y.; Tian, Z.-Q. Bias switching in single-molecule junctions through destructive quantum interference. Electrochimica Acta 2024, 507, 145136. doi:10.1016/j.electacta.2024.145136
- Shekhawat, A. S.; Sahu, B.; Diwan, A.; Chaudhary, A.; Shrivastav, A. M.; Srivastava, T.; Kumar, R.; Saxena, S. K. Insight of Employing Molecular Junctions for Sensor Applications. ACS sensors 2024, 9, 5025–5051. doi:10.1021/acssensors.4c02173
- Yan, C.; Fang, C.; Gan, J.; Wang, J.; Zhao, X.; Wang, X.; Li, J.; Zhang, Y.; Liu, H.; Li, X.; Bai, J.; Liu, J.; Hong, W. From Molecular Electronics to Molecular Intelligence. ACS nano 2024, 18, 28531–28556. doi:10.1021/acsnano.4c10389
- Toscano-Negrette, R.; León-González, J.; Gil-Corrales, J.; Ojeda, J.; Morales, A.; Eramo, G.; Vinasco, J.; Duque, C. Theoretical study of the thermoelectric properties through a single-molecule junction of Zinc Porphyrin. Physica E: Low-dimensional Systems and Nanostructures 2024, 161, 115970. doi:10.1016/j.physe.2024.115970
- Alanazi, B.; Alajmi, A.; Aljobory, A.; Lambert, C.; Ismael, A. Tuning quantum interference through molecular junctions formed from cross-linked OPE-3 dimers. Journal of Materials Chemistry C 2024, 12, 6905–6910. doi:10.1039/d4tc00611a
- Chen, Z.; Grace, I. M.; Woltering, S. L.; Chen, L.; Gee, A.; Baugh, J.; Briggs, G. A. D.; Bogani, L.; Mol, J. A.; Lambert, C. J.; Anderson, H. L.; Thomas, J. O. Quantum interference enhances the performance of single-molecule transistors. Nature nanotechnology 2024, 19, 986–992. doi:10.1038/s41565-024-01633-1
- Guo, Y.; Li, M.; Zhao, C.; Zhang, Y.; Jia, C.; Guo, X. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS Au 2024, 4, 1278–1294. doi:10.1021/jacsau.3c00845
- Al-Owaedi, O. A. Thermoelectric Properties of Porphyrin Nano Rings: A Theoretical and Modelling Investigation. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300616. doi:10.1002/cphc.202300616
- Rashid, U.; Bro-Jørgensen, W.; Harilal, K. B.; Sreelakshmi, P. A.; Mondal, R. R.; Chittari Pisharam, V.; Parida, K. N.; Geetharani, K.; Hamill, J. M.; Kaliginedi, V. Chemistry of the Au-Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. Journal of the American Chemical Society 2024, 146, 9063–9073. doi:10.1021/jacs.3c14079
- Yuan, S.; Zhou, Y.; Gao, T.; Chen, L.; Xu, W.; Duan, P.; Wang, J.; Pan, Z.; Tang, C.; Yang, Y.; Huang, R.; Xiao, Z.; Hong, W. Electric field-driven folding of single molecules. Chinese Chemical Letters 2024, 35, 108404. doi:10.1016/j.cclet.2023.108404