Structural and electronic properties of oligo- and polythiophenes modified by substituents

Simon P. Rittmeyer and Axel Groß
Beilstein J. Nanotechnol. 2012, 3, 909–919. https://doi.org/10.3762/bjnano.3.101

Cite the Following Article

Structural and electronic properties of oligo- and polythiophenes modified by substituents
Simon P. Rittmeyer and Axel Groß
Beilstein J. Nanotechnol. 2012, 3, 909–919. https://doi.org/10.3762/bjnano.3.101

How to Cite

Rittmeyer, S. P.; Groß, A. Beilstein J. Nanotechnol. 2012, 3, 909–919. doi:10.3762/bjnano.3.101

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Frontana Uribe, B. A.; Palma‐Cando, A. U. doi:10.1002/0471238961.0512050318052514.a01.pub3
  • Garg, S.; Goel, N. Optoelectronic Applications of Conjugated Organic Polymers: Influence of Donor/Acceptor Groups through Density Functional Studies. The Journal of Physical Chemistry C 2022, 126, 9313–9323. doi:10.1021/acs.jpcc.2c02938
  • Sinsinbar, G.; Palaniappan, A.; Yildiz, U. H.; Liedberg, B. A Perspective on Polythiophenes as Conformation Dependent Optical Reporters for Label-Free Bioanalytics. ACS sensors 2022, 7, 686–703. doi:10.1021/acssensors.1c02476
  • Jiang, F.; Liu, P.; Lu, B.; Liu, C.; Xu, J. doi:10.1002/9781119550723.ch4
  • Kang, I.; Lee, T.; Yoon, Y. R.; Kim, J. W.; Kim, B.-K.; Lee, J.; Lee, J. H.; Kim, S. Y. Synthesis of Arylene Ether-Type Hyperbranched Poly(triphenylamine) for Lithium Battery Cathodes. Materials (Basel, Switzerland) 2021, 14, 7885. doi:10.3390/ma14247885
  • Putra, M. H.; Seidenath, S.; Kupfer, S.; Gräfe, S.; Groß, A. Coupling of photoactive transition metal complexes to a functional polymer matrix. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 17104–17114. doi:10.1002/chem.202102776
  • Paulino, P. H. S.; Silva, C. F.; De Almeida, W. B.; Guimarães, L.; Nascimento, C. S. A theoretical study of poly(p-phenylenes) and their cyclodextrin-based insulated molecular wires. Computational and Theoretical Chemistry 2021, 1197, 113157. doi:10.1016/j.comptc.2021.113157
  • Sirohi, A.; SanthiBhushan, B.; Srivastava, A. Charge transport in polythiophene molecular device: DFT analysis. Journal of molecular modeling 2021, 27, 77. doi:10.1007/s00894-021-04680-w
  • Quoc, T. V.; Duong, L. T.; Quoc, V. D.; Quoc, T. T.; Trong, D. N.; Talu, S. Effect of doped H, Br, Cu, Kr, Ge, As and Fe on structural features and bandgap of poly C13H8OS-X: a DFT calculation. Designed monomers and polymers 2021, 24, 53–62. doi:10.1080/15685551.2021.1877431
  • Quoc, T. V.; Do Ba, D.; Thuy, D. T. T.; Ngoc, L. N.; Thuy, C. N.; Thi, H. V.; Khanh, L. D.; Yen, O. D. T.; Thai, H.; Long, V. C.; Talu, S.; Trong, D. N. DFT study on some polythiophenes containing benzo[d]thiazole and benzo[d]oxazole: structure and band gap. Designed monomers and polymers 2021, 24, 274–284. doi:10.1080/15685551.2021.1971376
  • Vu, Q. T.; Tran, T.-T.-D.; Nguyen, T.-C.; Nguyen, T. V.; Nguyen, H. M.; Van Vinh, P.; Nguyen-Trong, D.; Duc, N. D.; Nguyen-Tri, P. DFT Prediction of Factors Affecting the Structural Characteristics, the Transition Temperature and the Electronic Density of Some New Conjugated Polymers. Polymers 2020, 12, 1207. doi:10.3390/polym12061207
  • Latiff, A. B. A.; Chong, Y. Y.; Mark-Lee, W. F.; Kassim, M. B. Insight into Positional Isomerism of N-(Benzo[d]thiazol-2-yl)-o/m/p-Nitrobenzamide: Crystal Structure, Hirshfeld Surface Analysis and Interaction Energy. Crystals 2020, 10, 348. doi:10.3390/cryst10050348
  • Popoola, S. A.; Al-Harbi, M. H. M.; Al-Rashidi, A. H.; Almarwani, M. S. A.; Almohammedi, A.; Logunleko, A. O.; Al-Saadi, A. A. DFT evaluation of the effects of OH, NH2 and Br substituents on the properties of 2,2′-bipyridine derivatives. Journal of Taibah University for Science 2020, 14, 1527–1537. doi:10.1080/16583655.2020.1843872
  • Karpavičienė, I.; Jonušis, M.; Leduskrasts, K.; Misiūnaitė, I.; Suna, E.; Čikotienė, I. Synthesis and photophysical properties of 3,5-diaryl-2-heteroarylthiophenes. Dyes and Pigments 2019, 170, 107646. doi:10.1016/j.dyepig.2019.107646
  • Valderrama-García, B. X.; González-Méndez, I.; Sournia-Saquet, A.; Tassé, M.; Ching, K. I. M.-C.; Rivera, E. Electrosynthesis of thin films of polythiophenes containing pyrene groups and flexible spacers, useful in the preparation of graphene polymer composites. MRS Advances 2019, 4, 3233–3242. doi:10.1557/adv.2019.410
  • Santos, E. S.; Reis, V. S.; Guimarães, L.; Nascimento, C. S. Molecular wires formed from native and push-pull derivatives polypyrroles and β-cyclodextrins: A HOMO-LUMO gap theoretical investigation. Chemical Physics Letters 2019, 730, 141–146. doi:10.1016/j.cplett.2019.05.058
  • Rostami, Z.; Saedi, L.; Beheshti, K. S.; Vahabi, V.; Ostadhosseini, N. Design of a novel series of small molecule donors for application in organic solar cells. Solar Energy 2019, 186, 72–83. doi:10.1016/j.solener.2019.04.080
  • Thanasamy, D.; Jesuraj, D.; kannan, S. K. K.; Avadhanam, V. A novel route to synthesis polythiophene with great yield and high electrical conductivity without post doping process. Polymer 2019, 175, 32–40. doi:10.1016/j.polymer.2019.03.042
  • Golsanamlou, Z.; Tagani, M. B.; Soleimani, H. R. Large thermoelectric efficiency of doped polythiophene junction: A density functional study. Physica E: Low-dimensional Systems and Nanostructures 2018, 100, 31–39. doi:10.1016/j.physe.2018.02.024
  • Kaloni, T. P.; Giesbrecht, P. K.; Schreckenbach, G.; Freund, M. S. Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials 2017, 29, 10248–10283. doi:10.1021/acs.chemmater.7b03035
Other Beilstein-Institut Open Science Activities