Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

Baran Eren, Dorothée Hug, Laurent Marot, Rémy Pawlak, Marcin Kisiel, Roland Steiner, Dominik M. Zumbühl and Ernst Meyer
Beilstein J. Nanotechnol. 2012, 3, 852–859. https://doi.org/10.3762/bjnano.3.96

Cite the Following Article

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?
Baran Eren, Dorothée Hug, Laurent Marot, Rémy Pawlak, Marcin Kisiel, Roland Steiner, Dominik M. Zumbühl and Ernst Meyer
Beilstein J. Nanotechnol. 2012, 3, 852–859. https://doi.org/10.3762/bjnano.3.96

How to Cite

Eren, B.; Hug, D.; Marot, L.; Pawlak, R.; Kisiel, M.; Steiner, R.; Zumbühl, D. M.; Meyer, E. Beilstein J. Nanotechnol. 2012, 3, 852–859. doi:10.3762/bjnano.3.96

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Aoi, S.; Hirose, S.; Soeda, W.; Kaneko, H.; Mali, K. S.; De Feyter, S.; Tahara, K. Spatially Controlled Aryl Radical Grafting of Graphite Surfaces Guided by Self-Assembled Molecular Networks of Linear Alkane Derivatives: The Importance of Conformational Dynamics. Langmuir : the ACS journal of surfaces and colloids 2023, 39, 5986–5994. doi:10.1021/acs.langmuir.2c03434
  • Gulyaev, P. V.; Shushkov, A. A. A Technology for Creating Reference Marks on the Surface of Pyrolytic Graphite. Technical Physics Letters 2022, 48, 287–291. doi:10.1134/s1063785022100030
  • Gulyaev, P. V.; Tyurikov, A. V.; Ermolin, K. S.; Shelkovnikova, T. E. Processing and Recognition of Two-Coordinate Reference Marks Images in Scanning Probe Microscopy. Optics and Spectroscopy 2022, 130, 527–531. doi:10.1134/s0030400x22110029
  • Fei, Y.; Fang, S.; Hu, Y. H. Synthesis, properties and potential applications of hydrogenated graphene. Chemical Engineering Journal 2020, 397, 125408. doi:10.1016/j.cej.2020.125408
  • Matsui, T.; Sato, H.; Kita, K.; Amend, A. E. B.; Fukuyama, H. Hexagonal Nanopits with the Zigzag Edge State on GraphiteSurfaces Synthesized by Hydrogen-Plasma Etching. The Journal of Physical Chemistry C 2019, 123, 22665–22673. doi:10.1021/acs.jpcc.9b06885
  • de B. Mota, F.; Rivelino, R.; Medeiros, P. V. C.; de Castilho, C. M. C. A critical assessment on the electron transport through dehydrogenated intrinsically conducting channels in graphane-graphene hybrids. Materials Research Express 2019, 6, 085618. doi:10.1088/2053-1591/ab1fb5
  • Garino, N.; Lamberti, A.; Stassi, S.; Castellino, M.; Fontana, M.; Roppolo, I.; Sacco, A.; Pirri, C.; Chiappone, A. Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers. Electrochimica Acta 2019, 306, 420–426. doi:10.1016/j.electacta.2019.02.095
  • Venosta, L.; Bajales, N.; Suárez, S.; Bercoff, P. G. Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography. Beilstein journal of nanotechnology 2018, 9, 2708–2717. doi:10.3762/bjnano.9.253
  • Mehedi, H.-A.; Ferrah, D.; Dubois, J.; Petit-Etienne, C.; Okuno, H.; Bouchiat, V.; Renault, O.; Cunge, G. High density H 2 and He plasmas: Can they be used to treat graphene?. Journal of Applied Physics 2018, 124, 125304. doi:10.1063/1.5043605
  • Khan, A. A.; Jagdale, P. V.; Castellino, M.; Rovere, M.; Jehangir, Q.; Mandracci, P.; Rosso, C.; Tagliaferro, A. Innovative functionalized carbon fibers from waste: How to enhance polymer composites properties. Composites Part B: Engineering 2018, 139, 31–39. doi:10.1016/j.compositesb.2017.11.064
  • Matsumura, K.; Chiashi, S.; Maruyama, S.; Choi, J. Macroscale tribological properties of fluorinated graphene. Applied Surface Science 2018, 432, 190–195. doi:10.1016/j.apsusc.2017.06.190
  • Hug, D.; Zihlmann, S.; Rehmann, M. K.; Kalyoncu, Y. B.; Camenzind, T. N.; Marot, L.; Watanabe, K.; Taniguchi, T.; Zumbühl, D. M. Anisotropic etching of graphite and graphene in a remote hydrogen plasma. npj 2D Materials and Applications 2017, 1, 1–6. doi:10.1038/s41699-017-0021-7
  • Harpale, A.; Chew, H. B. Hydrogen-plasma patterning of multilayer graphene: Mechanisms and modeling. Carbon 2017, 117, 82–91. doi:10.1016/j.carbon.2017.02.062
  • Wallace, J. S.; Quinn, A.; Gardella, J. A.; Huang, D.; Hu, J.; Kong, E. S.-W.; Joh, H.-I. Beyond defect formation: Spectroscopic characterization of plasma-induced structural and electronic transformations in graphene. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2016, 34, 061502. doi:10.1116/1.4962287
  • Seah, C.-M.; Vigolo, B.; Chai, S.-P.; Mohamed, A. R. Mechanisms of graphene fabrication through plasma-induced layer-by-layer thinning. Carbon 2016, 105, 496–509. doi:10.1016/j.carbon.2016.04.072
  • Casolo, S.; Tantardini, G. F.; Martinazzo, R. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations. The journal of physical chemistry. A 2016, 120, 5032–5040. doi:10.1021/acs.jpca.5b12761
  • Wallace, J. S.; Quinn, A.; Gardella, J. A.; Hu, J.; Kong, E. S.-W.; Joh, H.-I. Time-of-flight secondary ion mass spectrometry as a tool for evaluating the plasma-induced hydrogenation of graphene. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2016, 34. doi:10.1116/1.4942086
  • Daniels, K. M.; Obe, A.; Daas, B. K.; Weidner, J. W.; Williams, C. T.; Sudarshan, T. S.; Chandrashekhar, M. Metal Catalyzed Electrochemical Synthesis of Hydrocarbons from Epitaxial Graphene. Journal of The Electrochemical Society 2016, 163, E130–E134. doi:10.1149/2.0791605jes
  • Eren, B.; Gysin, U.; Marot, L.; Glatzel, T.-H.; Steiner, R.; Meyer, E. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy. Applied Physics Letters 2016, 108, 041602. doi:10.1063/1.4940891
  • Eren, B.; Fu, W.; Marot, L.; Calame, M.; Steiner, R.; Meyer, E. Spectroscopic ellipsometry on Si/SiO2/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering. Applied Physics Letters 2015, 106, 011904. doi:10.1063/1.4905597

Patents

  • CUNGE GILLES; DAVYDOVA ALEXANDRA; DESPIAU-PUJO EMILIE; FERRAH DJAWHAR; RENAULT OLIVIER. Method for the exfoliation of graphene. US 11554959 B2, Jan 17, 2023.
  • CUNGE GILLES; DAVYDOVA ALEXANDRA; DESPIAU-PUJO EMILIE; FERRAH DJAWHAR; RENAULT OLIVIER. METHOD FOR THE EXFOLIATION OF GRAPHENE. WO 2018099759 A1, June 7, 2018.
  • LEE DONGCHIN; KIM CHUL-HONG; CHO SUNGHEE; JEONG YONGBIN. Organic light emitting diode display panel and method of fabricating the same. US 9673417 B2, June 6, 2017.
  • LEE DONGCHIN; KIM CHUL-HONG; CHO SUNGHEE; JEONG YONGBIN. ORGANIC LIGHT EMITTING DIODE DISPLAY PANEL AND METHOD OF FABRICATING THE SAME. US 20160104867 A1, April 14, 2016.
Other Beilstein-Institut Open Science Activities