Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device

Jennifer S. Mathieson, Mali H. Rosnes, Victor Sans, Philip J. Kitson and Leroy Cronin
Beilstein J. Nanotechnol. 2013, 4, 285–291. https://doi.org/10.3762/bjnano.4.31

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 337.6 KB Download
Supporting Information File 2: Device design as a compressed STL file (editable, e.g., with Autodesk123D®).
Format: ZIP Size: 201.5 KB Download

Cite the Following Article

Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device
Jennifer S. Mathieson, Mali H. Rosnes, Victor Sans, Philip J. Kitson and Leroy Cronin
Beilstein J. Nanotechnol. 2013, 4, 285–291. https://doi.org/10.3762/bjnano.4.31

How to Cite

Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Beilstein J. Nanotechnol. 2013, 4, 285–291. doi:10.3762/bjnano.4.31

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Resul, M. F. M. G.; Rehman, A.; Fernández, A. M. L.; Eze, V. C.; Harvey, A. P. Continuous process for the epoxidation of terpenes using mesoscale oscillatory baffled reactors. Chemical Engineering and Processing - Process Intensification 2022, 177, 108998. doi:10.1016/j.cep.2022.108998
  • Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
  • Gordeev, E. G.; Erokhin, K. S.; Kobelev, A. D.; Burykina, J. V.; Novikov, P. V.; Ananikov, V. P. Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Scientific reports 2022, 12, 3780. doi:10.1038/s41598-022-07583-9
  • Chen, P.-C.; Zhang, W.-Z.; Chen, W.-R.; Jair, Y.-C.; Wu, Y.-H.; Liu, Y.-H.; Chen, P.-Z.; Chen, L.-Y.; Chen, P.-S. Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. Sensors and Actuators B: Chemical 2022, 350, 130888. doi:10.1016/j.snb.2021.130888
  • Nie, J.; He, Y. Integration of three-dimensional printing and microfluidics. Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip; Elsevier, 2022; pp 385–406. doi:10.1016/b978-0-444-59432-7.00003-0
  • Duarte, L. C.; Pereira, I.; Maciel, L. I.; Vaz, B. G.; Coltro, W. K. T. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry. Analytica chimica acta 2021, 1190, 339252. doi:10.1016/j.aca.2021.339252
  • Hammer, A. J. S.; Leonov, A.; Bell, N. L.; Cronin, L. Chemputation and the Standardization of Chemical Informatics. JACS Au 2021, 1, 1572–1587. doi:10.1021/jacsau.1c00303
  • Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 285–302. doi:10.1007/s41981-021-00140-x
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 1–18.
  • Grajewski, M.; Hermann, M.; Oleschuk, R. D.; Verpoorte, E.; Salentijn, G. Leveraging 3D printing to enhance mass spectrometry: A review. Analytica chimica acta 2021, 1166, 338332. doi:10.1016/j.aca.2021.338332
  • Rogolino, A.; Savio, G. Trends in additively manufactured microfluidics, microreactors and catalytic materials. Materials Advances 2021, 2, 845–855. doi:10.1039/d0ma00704h
  • Guillén-Alonso, H.; Rosas-Román, I.; Winkler, R. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. Analytical methods : advancing methods and applications 2021, 13, 852–861. doi:10.1039/d0ay02290j
  • Gordeev, E. G.; Ananikov, V. P. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews 2020, 89, 1507–1561. doi:10.1070/rcr4980
  • Zargaryan, A.; Farhoudi, N.; Haworth, G.; Ashby, J. F.; Au, S. H. Hybrid 3D printed-paper microfluidics. Scientific reports 2020, 10, 1–9. doi:10.1038/s41598-020-75489-5
  • Penny, M. R.; Hilton, S. T. Design and development of 3D printed catalytically-active stirrers for chemical synthesis. Reaction Chemistry & Engineering 2020, 5, 853–858. doi:10.1039/c9re00492k
  • Hübner, E. G.; Lederle, F. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. Handbuch Chemische Reaktoren; Springer Berlin Heidelberg, 2020; pp 1361–1389. doi:10.1007/978-3-662-56434-9_48
  • Saggiomo, V. Catalyst Immobilization; Wiley, 2019; pp 369–408. doi:10.1002/9783527817290.ch11
  • Monaghan, T.; Harding, M. J.; Christie, S. D. R.; Friel, R. J. In-situ time resolved spectrographic measurement using an additively manufactured metallic micro-fluidic analysis platform. PloS one 2019, 14, e0224492. doi:10.1371/journal.pone.0224492
  • Spoerk, M.; Holzer, C.; Gonzalez-Gutierrez, J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science 2019, 137, 48545. doi:10.1002/app.48545
Other Beilstein-Institut Open Science Activities