Supporting Information
Supporting Information File 1: Additional experimental data. | ||
Format: PDF | Size: 337.6 KB | Download |
Supporting Information File 2: Device design as a compressed STL file (editable, e.g., with Autodesk123D®). | ||
Format: ZIP | Size: 201.5 KB | Download |
Cite the Following Article
Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device
Jennifer S. Mathieson, Mali H. Rosnes, Victor Sans, Philip J. Kitson and Leroy Cronin
Beilstein J. Nanotechnol. 2013, 4, 285–291.
https://doi.org/10.3762/bjnano.4.31
How to Cite
Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Beilstein J. Nanotechnol. 2013, 4, 285–291. doi:10.3762/bjnano.4.31
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Duez, Q.; van de Wiel, J.; van Sluijs, B.; Ghosh, S.; Baltussen, M. G.; Derks, M. T. G. M.; Roithová, J.; Huck, W. T. S. Quantitative Online Monitoring of an Immobilized Enzymatic Network by Ion Mobility-Mass Spectrometry. Journal of the American Chemical Society 2024, 146, 20778–20787. doi:10.1021/jacs.4c04218
- S., S.; A., S.; S., I.; D., B.; M., S.; I. J. G., P.; A. V., I.; J. P., K.; H., G.-W. Thermokinetic analyses of metal-sensitive reactions in a ceramic flow calorimeter. Reaction Chemistry & Engineering 2024, 9, 1805–1815. doi:10.1039/d4re00014e
- Resul, M. F. M. G.; Rehman, A.; Fernández, A. M. L.; Eze, V. C.; Harvey, A. P. Continuous process for the epoxidation of terpenes using mesoscale oscillatory baffled reactors. Chemical Engineering and Processing - Process Intensification 2022, 177, 108998. doi:10.1016/j.cep.2022.108998
- Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
- Gordeev, E. G.; Erokhin, K. S.; Kobelev, A. D.; Burykina, J. V.; Novikov, P. V.; Ananikov, V. P. Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis. Scientific reports 2022, 12, 3780. doi:10.1038/s41598-022-07583-9
- Chen, P.-C.; Zhang, W.-Z.; Chen, W.-R.; Jair, Y.-C.; Wu, Y.-H.; Liu, Y.-H.; Chen, P.-Z.; Chen, L.-Y.; Chen, P.-S. Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. Sensors and Actuators B: Chemical 2022, 350, 130888. doi:10.1016/j.snb.2021.130888
- Nie, J.; He, Y. Integration of three-dimensional printing and microfluidics. Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip; Elsevier, 2022; pp 385–406. doi:10.1016/b978-0-444-59432-7.00003-0
- Duarte, L. C.; Pereira, I.; Maciel, L. I.; Vaz, B. G.; Coltro, W. K. T. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry. Analytica chimica acta 2021, 1190, 339252. doi:10.1016/j.aca.2021.339252
- Hammer, A. J. S.; Leonov, A.; Bell, N. L.; Cronin, L. Chemputation and the Standardization of Chemical Informatics. JACS Au 2021, 1, 1572–1587. doi:10.1021/jacsau.1c00303
- Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
- Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 285–302. doi:10.1007/s41981-021-00140-x
- Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 1–18.
- Grajewski, M.; Hermann, M.; Oleschuk, R. D.; Verpoorte, E.; Salentijn, G. Leveraging 3D printing to enhance mass spectrometry: A review. Analytica chimica acta 2021, 1166, 338332. doi:10.1016/j.aca.2021.338332
- Rogolino, A.; Savio, G. Trends in additively manufactured microfluidics, microreactors and catalytic materials. Materials Advances 2021, 2, 845–855. doi:10.1039/d0ma00704h
- Guillén-Alonso, H.; Rosas-Román, I.; Winkler, R. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. Analytical methods : advancing methods and applications 2021, 13, 852–861. doi:10.1039/d0ay02290j
- Gordeev, E. G.; Ananikov, V. P. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews 2020, 89, 1507–1561. doi:10.1070/rcr4980
- Zargaryan, A.; Farhoudi, N.; Haworth, G.; Ashby, J. F.; Au, S. H. Hybrid 3D printed-paper microfluidics. Scientific reports 2020, 10, 1–9. doi:10.1038/s41598-020-75489-5
- Penny, M. R.; Hilton, S. T. Design and development of 3D printed catalytically-active stirrers for chemical synthesis. Reaction Chemistry & Engineering 2020, 5, 853–858. doi:10.1039/c9re00492k
- Hübner, E. G.; Lederle, F. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. Springer Reference Naturwissenschaften; Springer Berlin Heidelberg, 2020; pp 1361–1389. doi:10.1007/978-3-662-56434-9_48
- Saggiomo, V. Catalyst Immobilization; Wiley, 2019; pp 369–408. doi:10.1002/9783527817290.ch11