Nanoglasses: a new kind of noncrystalline materials

Herbert Gleiter
Beilstein J. Nanotechnol. 2013, 4, 517–533. https://doi.org/10.3762/bjnano.4.61

Cite the Following Article

Nanoglasses: a new kind of noncrystalline materials
Herbert Gleiter
Beilstein J. Nanotechnol. 2013, 4, 517–533. https://doi.org/10.3762/bjnano.4.61

How to Cite

Gleiter, H. Beilstein J. Nanotechnol. 2013, 4, 517–533. doi:10.3762/bjnano.4.61

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yeh, C.-J.; Huang, C.-W.; Lo, Y.-C.; Ogata, S.; Li, D. Y.; Hu, H.-T.; Jang, J. S.-C. Effect of nanoglass grain size investigated by a mesoscale variable characteristic strain model. International Journal of Mechanical Sciences 2024, 266, 108981. doi:10.1016/j.ijmecsci.2024.108981
  • Ghafari, M.; Gleiter, H.; Wilde, G. Quantum mechanical effects controlling the magnetic properties of transition metal based nanoglass. APL Quantum 2024, 1. doi:10.1063/5.0188898
  • Li, T.; Li, N.; Kuang, B.; Zheng, G. Molecular dynamics simulation on the mechanical properties of Zr-Cu metallic nanoglasses with heterogeneous chemical compositions. Frontiers in Materials 2024, 11. doi:10.3389/fmats.2024.1355522
  • Aaron Rigoni, C.; Boltynjuk, E.; Voigt, H.; Rösner, H.; Tyler, B.; Hahn, H.; Divinski, S. V.; Wilde, G. Enhanced diffusion in thin-film Cu-Zr nanoglasses. Acta Materialia 2024, 265, 119634. doi:10.1016/j.actamat.2023.119634
  • Gu, J.; Duan, F.; Liu, S.; Cha, W.; Lu, J. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chemical reviews 2024, 124, 1247–1287. doi:10.1021/acs.chemrev.3c00514
  • Zhang, J.; Zhang, M.; Wang, X.; Li, M. Gradient network architecture design induced strain delocalization and delayed failure in metallic glass matrix composites. Scripta Materialia 2023, 237, 115721. doi:10.1016/j.scriptamat.2023.115721
  • Borroto, A.; Bruyère, S.; Migot, S.; de Melo, C.; Horwat, D.; Pierson, J. Nanostructured Zr-Cu metallic glass thin films with tailored electrical and optical properties. Journal of Alloys and Compounds 2023, 967, 171681. doi:10.1016/j.jallcom.2023.171681
  • Vasantham, S. K.; Boltynjuk, E.; Nandam, S. H.; Berganza Eguiarte, E.; Fuchs, H.; Hahn, H.; Hirtz, M. Nanoscale Confinement of Dip‐Pen Nanolithography Written Phospholipid Structures on CuZr Nanoglasses. Advanced Materials Interfaces 2023, 11. doi:10.1002/admi.202300721
  • Evertz, S.; Zálešák, J.; Hans, M.; Jansen, H.; Keckes, J.; Sheng, H.; Eckert, J.; Gammer, C.; Schneider, J. Mapping strain across Co80Ta7B13 / Co62Ta6B32 glassy interfaces. Materials & Design 2023, 234, 112327. doi:10.1016/j.matdes.2023.112327
  • Sayad, S.; Khanzadeh, M.; Alahyarizadeh, G.; Amigo, N. A molecular dynamics study on the mechanical response of thermal-pressure rejuvenated CuxZr100-x metallic glasses. Scientific reports 2023, 13, 16109. doi:10.1038/s41598-023-43432-z
  • Jian, X.; Li, J.; He, L.; Li, H.-W.; Zhang, M.; Zhang, P.; Lin, H.-J. Severe Plastic Deformation for Advanced Electrocatalysts for Electrocatalytic Hydrogen Production. MATERIALS TRANSACTIONS 2023, 64, 1515–1525. doi:10.2320/matertrans.mt-mf2022011
  • Singh, S. P.; Chellali, M. R.; Boll, T.; Gleiter, H.; Hahn, H. Nano-alloying and nano-chemistry of the immiscible elements Fe and Cu in a FeSc–Cu nanoglass. Materials Advances 2023, 4, 2604–2611. doi:10.1039/d3ma00167a
  • Kumar Yadav, S.; Kumar, A.; Mehta, N. Tailoring of physical properties of glassy selenium (g-Se) by using multi-walled carbon nanotubes (MWCNTs). Materials Science and Engineering: B 2023, 290, 116310. doi:10.1016/j.mseb.2023.116310
  • Sharma, A.; Tripathi, A.; Nandam, S. H.; Hahn, H.; Eswar Prasad, K. Role of indenter geometry on the deformation behavior in a Pd-Si based metallic and nanoglass. Journal of Alloys and Compounds 2023, 933, 167693. doi:10.1016/j.jallcom.2022.167693
  • Vlasova, M.; Aguilar, P. A. M.; Morelos, J. L. H.; Parra, A. P.; Serrano, M.; González, M. C. R.; Tapia, R. G. Formation of the amorphous multicomponent iron-based alloy during carbothermal reduction of Fe2O3 by waste activated sludge. Journal of Non-Crystalline Solids: X 2022, 16, 100122. doi:10.1016/j.nocx.2022.100122
  • Liu, P.; Xu, Y.; Yin, L.; Ma, S.; Han, L.; Wang, Z. Effect of thermal treatment on optical and electrical properties of Cu0.59(ZrO2)0.41 composite nanoglass film. Journal of Non-Crystalline Solids 2022, 597, 121908. doi:10.1016/j.jnoncrysol.2022.121908
  • Sharma, A.; Hirmukhe, S.; Nandam, S. H.; Hahn, H.; Singh, I.; Narayan, R. L.; Prasad, K. E. Strain rate sensitivity of a Cu60Zr40 metallic and nanoglass. Journal of Alloys and Compounds 2022, 921, 165991. doi:10.1016/j.jallcom.2022.165991
  • Wang, Y.; Gleiter, H.; Li, M. From patterning heterogeneity to nanoglass: A new approach to harden and toughen metallic glasses. MRS Bulletin 2022, 48, 56–67. doi:10.1557/s43577-022-00347-w
  • Li, T.; Zheng, G. The Anelastic Behaviors of Co–Fe–Ni–P Metallic Nano-glasses: Studies on the Viscous Glass–Glass Interfaces. Metallurgical and Materials Transactions A 2022, 53, 3736–3748. doi:10.1007/s11661-022-06781-4
  • Li, T.; Zheng, G. The influences of glass–glass interfaces and Ni additions on magnetic properties of transition-metal phosphide nano-glasses. AIP Advances 2022, 12. doi:10.1063/5.0088043

Patents

  • SCHREIBER HORST HERBERT ANTON; WANG BIN. Optical coupling device having diffraction gratings for coupling light with a light guide and fabrication method thereof. US 11650372 B2, May 16, 2023.
Other Beilstein-Institut Open Science Activities