Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

Pavel V. Komarov, Pavel G. Khalatur and Alexei R. Khokhlov
Beilstein J. Nanotechnol. 2013, 4, 567–587. https://doi.org/10.3762/bjnano.4.65

Cite the Following Article

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport
Pavel V. Komarov, Pavel G. Khalatur and Alexei R. Khokhlov
Beilstein J. Nanotechnol. 2013, 4, 567–587. https://doi.org/10.3762/bjnano.4.65

How to Cite

Komarov, P. V.; Khalatur, P. G.; Khokhlov, A. R. Beilstein J. Nanotechnol. 2013, 4, 567–587. doi:10.3762/bjnano.4.65

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zheng, S.-Q.; Liao, G.; Ma, R.-T.; Li, J.-Y.; Yi, H.-B. Mechanisms of Mg2+/Li+ separation regulated by ion dynamics near the entrance of 2D nanochannels under applied electric fields. Chemical Engineering Science 2024, 285, 119545. doi:10.1016/j.ces.2023.119545
  • Dorenbos, G. How fork-length asymmetry affects solvent connectivity and diffusion in grafted polymeric model membranes. The Journal of chemical physics 2024, 160. doi:10.1063/5.0193120
  • Hemmasi, E.; Tohidian, M.; Makki, H. Morphology and Transport Study of Acid-Base Blend Proton Exchange Membranes by Molecular Simulations: Case of Chitosan/Nafion. The journal of physical chemistry. B 2023, 127, 10624–10635. doi:10.1021/acs.jpcb.3c05332
  • Dorenbos, G. Simulated and Experimental Trends Regarding Water Uptake in Polymeric Electrolyte Membranes. The journal of physical chemistry. B 2023, 127, 9630–9641. doi:10.1021/acs.jpcb.3c05309
  • Privalov, A. F.; Sinitsyn, V. V.; Vogel, M. Transport Mechanism in Nafion Revealed by Detailed Comparison of 1H and 17O Nuclear Magnetic Resonance Diffusion Coefficients. The journal of physical chemistry letters 2023, 14, 9335–9340. doi:10.1021/acs.jpclett.3c02229
  • Flottat, T.; Latour, B.; Goujon, F.; Hauret, P.; Malfreyt, P. Investigating percolation and clustering effects on aquivion and nafion membranes at the molecular scale. International Journal of Hydrogen Energy 2023, 48, 33283–33296. doi:10.1016/j.ijhydene.2023.05.086
  • Shvidchenko, A. V.; Odinokov, A. S.; Primachenko, O. N.; Gofman, I. V.; Yevlampieva, N. P.; Marinenko, E. A.; Lebedev, V. T.; Kuklin, A. I.; Kulvelis, Y. V. Improving PFSA Membranes Using Sulfonated Nanodiamonds. Membranes 2023, 13, 712. doi:10.3390/membranes13080712
  • Xian, L.; Li, Z.; Li, S.; Chen, L.; Tao, W.-Q. Elucidating the impact mechanism of temperature and water content on thermal conductivity of hydrated Nafion membranes by molecular dynamics simulation. International Journal of Heat and Mass Transfer 2023, 208, 124034. doi:10.1016/j.ijheatmasstransfer.2023.124034
  • Zhao, Y.; Wang, G.; Chen, W. Molecular Dynamic Simulations of Proton and Water Transport Mechanism in a Nafion Pore. Energy Technology 2023, 11. doi:10.1002/ente.202300328
  • Zheng, C.; Wang, L.; Zhang, S.; Liu, X.; Zhang, J.; Yin, Y.; Jiao, K.; Du, Q.; Li, X.; Guiver, M. D. Microstructural orientation of anion exchange membrane through mechanical stretching for improved ion transport. Frontiers in Membrane Science and Technology 2023, 2. doi:10.3389/frmst.2023.1193355
  • Achar, S. K.; Bernasconi, L.; DeMaio, R. I.; Howard, K. R.; Johnson, J. K. In Silico Demonstration of Fast Anhydrous Proton Conduction on Graphanol. ACS applied materials & interfaces 2023, 15, 25873–25883. doi:10.1021/acsami.3c04022
  • Wang, G.; Liu, Z.; Liu, C.; Chen, W. Molecular Study of Nonequilibrium Transport Mechanism for Proton and Water in Porous Proton Exchange Membranes. International Journal of Energy Research 2023, 2023, 1–13. doi:10.1155/2023/1138198
  • Hei, B.; Pemberton, J. E.; Schwartz, S. D. Classical Molecular Dynamics Simulation of Glyonic Liquids: Structural Insights and Relation to Conductive Properties. The journal of physical chemistry. B 2023, 127, 921–931. doi:10.1021/acs.jpcb.2c07264
  • Primachenko, O. N.; Kulvelis, Y. V.; Odinokov, A. S.; Glebova, N. V.; Krasnova, A. O.; Antokolskiy, L. A.; Nechitailov, A. A.; Shvidchenko, A. V.; Gofman, I. V.; Marinenko, E. A.; Yevlampieva, N. P.; Lebedev, V. T.; Kuklin, A. I. New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance. Membranes 2022, 12, 827. doi:10.3390/membranes12090827
  • Primachenko, O. N.; Kulvelis, Y. V.; Marinenko, E. A.; Gofman, I. V.; Lebedev, V. T.; Kononova, S. V.; Kuklin, A. I.; Ivankov, O. I.; Soloviov, D. V.; Chenneviere, A. Orientational uniaxial stretching of proton conducting perfluorinated membranes. Journal of Applied Polymer Science 2022, 139. doi:10.1002/app.52229
  • Michelarakis, N.; Franz, F.; Gkagkas, K.; Gräter, F. Longitudinal strand ordering leads to shear thinning in Nafion. Physical chemistry chemical physics : PCCP 2021, 23, 25901–25910. doi:10.1039/d1cp02024b
  • Simonov, A. S.; Kharitonova, E. P.; Fedosov, D. A.; Kolozhvari, B. A.; Gallyamov, M. O. How does processing in supercritical carbon dioxide influence the Nafion film properties. Colloid and Polymer Science 2021, 299, 1863–1875. doi:10.1007/s00396-021-04897-4
  • Hao, J.; Ye, W.; Gao, C.; Zhu, M.; Yang, L.; Liao, R. Experimental and molecular level analysis of natural ester delaying degradation of cellulose insulation polymer. High Voltage 2021, 7, 1001–1015. doi:10.1049/hve2.12151
  • Dorenbos, G. Architecture dependent water uptake in model polyelectrolyte membranes. International Journal of Hydrogen Energy 2021, 46, 28232–28245. doi:10.1016/j.ijhydene.2021.06.040
  • Okonkwo, P. C.; Ben Belgacem, I.; Emori, W.; Uzoma, P. C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International Journal of Hydrogen Energy 2021, 46, 27956–27973. doi:10.1016/j.ijhydene.2021.06.032
Other Beilstein-Institut Open Science Activities