Functionalized nanostructures for enhanced photocatalytic performance under solar light

Liejin Guo, Dengwei Jing, Maochang Liu, Yubin Chen, Shaohua Shen, Jinwen Shi and Kai Zhang
Beilstein J. Nanotechnol. 2014, 5, 994–1004. https://doi.org/10.3762/bjnano.5.113

Cite the Following Article

Functionalized nanostructures for enhanced photocatalytic performance under solar light
Liejin Guo, Dengwei Jing, Maochang Liu, Yubin Chen, Shaohua Shen, Jinwen Shi and Kai Zhang
Beilstein J. Nanotechnol. 2014, 5, 994–1004. https://doi.org/10.3762/bjnano.5.113

How to Cite

Guo, L.; Jing, D.; Liu, M.; Chen, Y.; Shen, S.; Shi, J.; Zhang, K. Beilstein J. Nanotechnol. 2014, 5, 994–1004. doi:10.3762/bjnano.5.113

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liu, M.; Liu, F.; Xue, F.; Shi, J.; Huang, H.; Li, N. doi:10.1002/9783527831005.ch2
  • Páll, B.; Mersel, M.-A.; Pekker, P.; Makó, É.; Vágvölgyi, V.; Németh, M.; Pap, J. S.; Fodor, L.; Horváth, O. Photocatalytic H2 Production by Visible Light on Cd0.5Zn0.5S Photocatalysts Modified with Ni(OH)2 by Impregnation Method. International journal of molecular sciences 2023, 24, 9802. doi:10.3390/ijms24129802
  • Sodeinde, K. O.; Olusanya, S. O.; Lawal, O. S.; Sriariyanun, M.; Adediran, A. A. Enhanced adsorptional-photocatalytic degradation of chloramphenicol by reduced graphene oxide-zinc oxide nanocomposite. Scientific reports 2022, 12, 17054. doi:10.1038/s41598-022-21266-5
  • Mersel, M.-A.; Fodor, L.; Pekker, P.; Makó, É.; Horváth, O. Effects of Preparation Conditions on the Efficiency of Visible-Light-Driven Hydrogen Generation Based on Ni(II)-Modified Cd0.25Zn0.75S Photocatalysts. Molecules (Basel, Switzerland) 2022, 27, 4296. doi:10.3390/molecules27134296
  • Sreevidya, S.; Subramanian, K. S.; Katre, Y.; Singh, A. K.; Singh, J. Functionalized Nanomaterials for Catalytic Application; Wiley, 2021; pp 1–51. doi:10.1002/9781119809036.ch1
  • Chen, Y.; Xia, H.; Zhang, W.; Zheng, W.; Feng, X.; Jiang, J. Template synthesis of porous hierarchical Cu2ZnSnS4 nanostructures for photoelectrochemical water splitting. International Journal of Hydrogen Energy 2021, 46, 2862–2870. doi:10.1016/j.ijhydene.2020.04.243
  • Singh, H. M.; Choudhuri, B.; Chinnamuthu, P. Investigation of Optoelectronic Properties in Germanium Nanowire Integrated Silicon Substrate Using Kelvin Probe Force Microscopy. IEEE Transactions on Nanotechnology 2020, 19, 628–634. doi:10.1109/tnano.2020.3010691
  • Martínez, F. M.; Albiter, E.; Alfaro, S.; Luna, A. L.; Colbeau-Justin, C.; Barrera-Andrade, J. M.; Remita, H.; Valenzuela, M. A. Hydrogen Production from Glycerol Photoreforming on TiO2/HKUST-1 Composites: Effect of Preparation Method. Catalysts 2019, 9, 338. doi:10.3390/catal9040338
  • Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Yeon, J.; Kang, M.; Abdel-Wahab, A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019, 9, 276. doi:10.3390/catal9030276
  • Darvishi, M.; Nikfarjam, A. A Novel Thermochemical Method for Fabrication and Theoretical Explanation of High Luminescent Mn-Doped CdS Nanoparticles. Journal of Materials Science and Chemical Engineering 2018, 06, 1–20. doi:10.4236/msce.2018.63001
  • Julkapli, N. M.; Bagheri, S. Polymers for catalysis in water purification. Polymers for Advanced Technologies 2017, 29, 701–707. doi:10.1002/pat.4185
  • Qazi, U. Y.; Shervani, Z.; Javaid, R.; Kajimoto, S.; Fukumura, H. Formation and Growth of Silver Nanocubes upon Nanosecond Pulsed Laser Irradiation: Effects of Laser Intensity and Irradiation Time. Advances in Nanoparticles 2017, 06, 148–157. doi:10.4236/anp.2017.64013
  • Lin, Z.; Li, L.; Yu, L.; Li, W.; Yang, G. Modifying photocatalysts for solar hydrogen evolution based on the electron behavior. Journal of Materials Chemistry A 2017, 5, 5235–5259. doi:10.1039/c6ta10497e
  • Vattikuti, S. P.; Byon, C.; Chitturi, V. Selective hydrothermally synthesis of hexagonal WS2 platelets and their photocatalytic performance under visible light irradiation. Superlattices and Microstructures 2016, 94, 39–50. doi:10.1016/j.spmi.2016.03.042
  • Chandrakala, V.; Steffy, J. A. J.; Bachan, N.; Jeyarani, W. J.; Tenkyong, T.; Shyla, J. M. A Comparative Investigation of Dye-Sensitized Titanium Dioxide (TiO2) Nanorods Grown on Indium Tin Oxide (ITO) Substrates by Direct and Seed-Mediated Hydrothermal Methods. Acta Metallurgica Sinica (English Letters) 2016, 29, 457–463. doi:10.1007/s40195-016-0409-y
  • Dumbrava, A.; Berger, D.; Prodan, G.; Moscalu, F.; Diacon, A. Facile synthesis, characterization and application of functionalized cadmium sulfide nanopowders. Materials Chemistry and Physics 2016, 173, 70–77. doi:10.1016/j.matchemphys.2016.01.040
  • Zhang, L.; Tian, W.; Yong, C.; Chen, J.; Teng, H.; Zhou, J.; Shi, J.; Sun, Y. Light-driven removal of rhodamine B over SrTiO3 modified Bi2WO6 composites. RSC Advances 2016, 6, 83471–83481. doi:10.1039/c6ra13022d
  • Ay, S. B.; Perkgoz, N. K. Nanotechnological advances in catalytic thin films for green large-area surfaces. Journal of Nanomaterials 2015, 16, 313.
  • Leong, K. H.; Sim, L. C.; Bahnemann, D. W.; Jang, M.; Ibrahim, S.; Saravanan, P. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Materials 2015, 3, 104503. doi:10.1063/1.4926454
  • Roy, M.; Ghosh, S.; Naskar, M. K. Ligand-assisted soft-chemical synthesis of self-assembled different shaped mesoporous Co3O4: efficient visible light photocatalysts. Physical chemistry chemical physics : PCCP 2015, 17, 10160–10169. doi:10.1039/c5cp00649j
Other Beilstein-Institut Open Science Activities