Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

Matthew F. B. Green, Taner Esat, Christian Wagner, Philipp Leinen, Alexander Grötsch, F. Stefan Tautz and Ruslan Temirov
Beilstein J. Nanotechnol. 2014, 5, 1926–1932. https://doi.org/10.3762/bjnano.5.203

Supporting Information

The paper is accompanied by a ZIP archive containing the following files: The file “Manipulation-sequence.avi” contains the sequence of intermediate images recorded during the manipulation, the final result of which is shown in Figure 4. The file “3Dmovie.avi” contains an animation exhibiting the 3-D model of the recorded manipulation trajectories shown in Figure 3 (for details cf. the caption of Figure 3). The file “3Dmodel.html” contains an interactive 3-D model of the recorded manipulation trajectories. To be viewed it must be placed in the same directory as the file “CanvasMatrix.js” (included in the ZIP archive) and opened with a browser. Use the mouse to rotate or zoom the field of view of the 3-D model.

Supporting Information File 1: Additional experimental data
Format: ZIP Size: 12.0 MB Download

Cite the Following Article

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope
Matthew F. B. Green, Taner Esat, Christian Wagner, Philipp Leinen, Alexander Grötsch, F. Stefan Tautz and Ruslan Temirov
Beilstein J. Nanotechnol. 2014, 5, 1926–1932. https://doi.org/10.3762/bjnano.5.203

How to Cite

Green, M. F. B.; Esat, T.; Wagner, C.; Leinen, P.; Grötsch, A.; Tautz, F. S.; Temirov, R. Beilstein J. Nanotechnol. 2014, 5, 1926–1932. doi:10.3762/bjnano.5.203

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rahman Laskar, M. A.; Celano, U. Scanning probe microscopy in the age of machine learning. APL Machine Learning 2023, 1. doi:10.1063/5.0160568
  • Freeman, M.; Applestone, R.; Behn, W.; Brar, V. Haptic sensation-based scanning probe microscopy: Exploring perceived forces for optimal intuition-driven control. Ultramicroscopy 2023, 255, 113856. doi:10.1016/j.ultramic.2023.113856
  • Scheidt, J.; Diener, A.; Maiworm, M.; Müller, K.-R.; Findeisen, R.; Driessens, K.; Tautz, F. S.; Wagner, C. Concept for the Real-Time Monitoring of Molecular Configurations during Manipulation with a Scanning Probe Microscope. The journal of physical chemistry. C, Nanomaterials and interfaces 2023, 127, 13817–13836. doi:10.1021/acs.jpcc.3c02072
  • Chen, I.-J.; Aapro, M.; Kipnis, A.; Ilin, A.; Liljeroth, P.; Foster, A. S. Precise atom manipulation through deep reinforcement learning. Nature communications 2022, 13, 7499. doi:10.1038/s41467-022-35149-w
  • Arefi, H. H.; Corken, D.; Tautz, F. S.; Maurer, R. J.; Wagner, C. Design Principles for Metastable Standing Molecules. The journal of physical chemistry. C, Nanomaterials and interfaces 2022, 126, 6880–6891. doi:10.1021/acs.jpcc.2c01514
  • Knol, M.; Arefi, H. H.; Corken, D.; Gardner, J.; Tautz, F. S.; Maurer, R. J.; Wagner, C. The stabilization potential of a standing molecule. Science advances 2021, 7, eabj9751. doi:10.1126/sciadv.abj9751
  • Zhong, Q.; Li, X.; Zhang, H.; Chi, L. Noncontact atomic force microscopy: Bond imaging and beyond. Surface Science Reports 2020, 75, 100509. doi:10.1016/j.surfrep.2020.100509
  • Leinen, P.; Esders, M.; Schütt, K. T.; Wagner, C.; Müller, K.-R.; Tautz, F. S. Autonomous robotic nanofabrication with reinforcement learning. Science advances 2020, 6. doi:10.1126/sciadv.abb6987
  • Eschmann, L.; Sabitova, A.; Temirov, R.; Tautz, F. S.; Krüger, P.; Rohlfing, M. Coverage-dependent anisotropy of the NTCDA/Ag(111) interface state dispersion. Physical Review B 2019, 100, 125155. doi:10.1103/physrevb.100.125155
  • Kocić, N.; Blank, D.; Abufager, P. N.; Lorente, N.; Decurtins, S.; Liu, S.-X.; Repp, J. Implementing Functionality in Molecular Self-Assembled Monolayers. Nano letters 2019, 19, 2750–2757. doi:10.1021/acs.nanolett.8b03960
  • Tewari, S.; Bakermans, J.; Wagner, C.; Galli, F.; van Ruitenbeek, J. M. Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain. Beilstein journal of nanotechnology 2019, 10, 337–348. doi:10.3762/bjnano.10.33
  • Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. The Review of scientific instruments 2019, 90, 011101. doi:10.1063/1.5052264
  • Sabitova, A.; Temirov, R.; Tautz, F. S. Lateral scattering potential of the PTCDA/Ag(111) interface state. Physical Review B 2018, 98, 205429. doi:10.1103/physrevb.98.205429
  • Esat, T.; Friedrich, N.; Tautz, F. S.; Temirov, R. A standing molecule as a single-electron field emitter. Nature 2018, 558, 573–576. doi:10.1038/s41586-018-0223-y
  • van Vreumingen, D.; Tewari, S.; Verbeek, F. J.; van Ruitenbeek, J. M. Micromachines - Towards Controlled Single-Molecule Manipulation Using “Real-Time” Molecular Dynamics Simulation: A GPU Implementation. Micromachines 2018, 9, 270. doi:10.3390/mi9060270
  • Archibald, R.; Bao, F.; Maksymovych, P. Backward SDE Filter for Jump Diffusion Processes and Its Applications in Material Sciences. 2018.
  • Wagner, C.; Temirov, R.; Tautz, F. S. Perspectives of Molecular Manipulation and Fabrication. Molecular Architectonics; Springer International Publishing, 2017; pp 253–319. doi:10.1007/978-3-319-57096-9_11
  • Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E. Single-molecule manipulation experiments to explore friction and adhesion. Journal of Physics D: Applied Physics 2017, 50, 113003. doi:10.1088/1361-6463/aa599d
  • Leinen, P.; Green, M.; Esat, T.; Wagner, C.; Tautz, F. S.; Temirov, R. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface. Journal of visualized experiments : JoVE 2016, 54506, 1–15. doi:10.3791/54506
  • Green, M.; Wagner, C.; Leinen, P.; Deilmann, T.; Krüger, P.; Rohlfing, M.; Tautz, F. S.; Temirov, R. Scanning quantum dot microscopy: A quantitative method to measure local electrostatic potential near surfaces. Japanese Journal of Applied Physics 2016, 55, 8NA04. doi:10.7567/jjap.55.08na04
Other Beilstein-Institut Open Science Activities