A catechol biosensor based on electrospun carbon nanofibers

Dawei Li, Zengyuan Pang, Xiaodong Chen, Lei Luo, Yibing Cai and Qufu Wei
Beilstein J. Nanotechnol. 2014, 5, 346–354. https://doi.org/10.3762/bjnano.5.39

Cite the Following Article

A catechol biosensor based on electrospun carbon nanofibers
Dawei Li, Zengyuan Pang, Xiaodong Chen, Lei Luo, Yibing Cai and Qufu Wei
Beilstein J. Nanotechnol. 2014, 5, 346–354. https://doi.org/10.3762/bjnano.5.39

How to Cite

Li, D.; Pang, Z.; Chen, X.; Luo, L.; Cai, Y.; Wei, Q. Beilstein J. Nanotechnol. 2014, 5, 346–354. doi:10.3762/bjnano.5.39

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jankowska, K.; Su, Z.; Jesionowski, T.; Zdarta, J.; Pinelo, M. The impact of electrospinning conditions on the properties of enzymes immobilized on electrospun materials: Exploring applications and future perspectives. Environmental Technology & Innovation 2023, 32, 103408. doi:10.1016/j.eti.2023.103408
  • Kucherenko, I. S.; Farre, C.; Raimondi, G.; Chaix, C.; Jaffrezic-Renault, N.; Chateaux, J.-F.; Sobolevskyi, M.; Soldatkin, O. O.; Dzyadevych, S. V.; Soldatkin, A. P.; Lagarde, F. A novel adenosine triphosphate (ATP) biosensor based on electrospun polymer nanofibers with entrapped hexokinase and glucose oxidase. Applied Nanoscience 2023, 13, 7037–7045. doi:10.1007/s13204-023-02861-y
  • Apetrei, R.-M.; Guven, N.; Camurlu, P. Functionalized nanofibers as sensors for monitoring food quality. Functionalized Nanofibers; Elsevier, 2023; pp 401–436. doi:10.1016/b978-0-323-99461-3.00025-x
  • Mansuriya, B. D.; Altintas, Z. Carbon nanomaterials for sensing applications. Fundamentals of Sensor Technology; Elsevier, 2023; pp 367–400. doi:10.1016/b978-0-323-88431-0.00021-1
  • Keshavarz, S.; Okoro, O. V.; Hamidi, M.; Derakhshankhah, H.; Azizi, M.; Nabavi, S. M.; Gholizadeh, S.; Amini, S. M.; Shavandi, A.; Luque, R.; Samadian, H. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coordination chemistry reviews 2022, 472, 214770. doi:10.1016/j.ccr.2022.214770
  • Raghav, D.; Jyoti, A.; Siddiqui, A. J.; Saxena, J. Plant-associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. Journal of applied microbiology 2022, 133, 287–310. doi:10.1111/jam.15574
  • YILDIRIM TİRGİL, N. Paper-Based Biosensor System for Fast and Sensitive Phenolic Compounds Detection. Kocaeli Journal of Science and Engineering 2022, 5, 13–21. doi:10.34088/kojose.887169
  • Inagaki, M.; Itoi, H.; Kang, F. Porous carbons for environment remediation. Porous Carbons; Elsevier, 2022; pp 541–802. doi:10.1016/b978-0-12-822115-0.00004-x
  • Sharma, S.; Agrawal, G. Biomedical Applications of Electrospun Polymer and Carbon Fibers. Encyclopedia of Materials: Plastics and Polymers; Elsevier, 2022; pp 681–696. doi:10.1016/b978-0-12-820352-1.00094-8
  • Mercante, L. A.; Pavinatto, A.; Pereira, T. S.; Migliorini, F. L.; dos Santos, D. M.; Correa, D. S. Nanofibers interfaces for biosensing: Design and applications. Sensors and Actuators Reports 2021, 3, 100048. doi:10.1016/j.snr.2021.100048
  • Kalkan, Z.; Yence, M.; Turk, F.; Bektas, T. U.; Ozturk, S.; Surdem, S.; Yildirim-Tirgil, N. Boronic Acid Substituted Polyaniline Based Enzymatic Biosensor System for Catechol Detection. Electroanalysis 2021, 34, 33–42. doi:10.1002/elan.202100271
  • Kailasa, S.; Reddy, M. S. B.; Maurya, M. R.; Rani, B. G.; Rao, K. V.; Sadasivuni, K. K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromolecular Materials and Engineering 2021, 306, 2100410. doi:10.1002/mame.202100410
  • Chandran, M.; Aswathy, E.; Shamna, I.; Vinoba, M.; Kottappara, R.; Bhagiyalakshmi, M. Laccase immobilized on Au confined MXene based electrode for electrochemical detection of catechol. Materials Today: Proceedings 2021, 46, 3136–3143. doi:10.1016/j.matpr.2021.02.697
  • Bounegru, A. V.; Apetrei, C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. International journal of molecular sciences 2020, 21, 9275. doi:10.3390/ijms21239275
  • Zhang, Y.; Li, X.; Li, D.; Wei, Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids and surfaces. B, Biointerfaces 2019, 186, 110683. doi:10.1016/j.colsurfb.2019.110683
  • Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. Sensors (Basel, Switzerland) 2019, 19, 3676. doi:10.3390/s19173676
  • Çetin, M. Z.; Camurlu, P. Utilization of Polypyrrole Nanofibers in Glucose Detection. Journal of The Electrochemical Society 2017, 164, B585–B590. doi:10.1149/2.1841712jes
  • Chaurasia, P. K.; Bharati, S. L. Significance of Laccases in Food Chemistry and Related Bioremediation. Soft Chemistry and Food Fermentation; Elsevier, 2017; pp 299–335. doi:10.1016/b978-0-12-811412-4.00011-4
  • Mohammadzadehmoghadam, S.; Dong, Y.; Barbhuiya, S.; Guo, L.; Liu, D.; Umer, R.; Qi, X.; Tang, Y. Electrospinning: Current Status and Future Trends. Nano-size Polymers; Springer International Publishing, 2016; pp 89–154. doi:10.1007/978-3-319-39715-3_4
  • Sinprachim, T.; Phumying, S.; Maensiri, S. Electrochemical energy storage performance of electrospun AgOx-MnOx/CNF composites. Journal of Alloys and Compounds 2016, 677, 1–11. doi:10.1016/j.jallcom.2016.03.174
Other Beilstein-Institut Open Science Activities