Design criteria for stable Pt/C fuel cell catalysts

Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

Supporting Information

Supporting Information features a schematic illustration of the most important steps in the synthesis process of HGS, Pt@HGS 1–2 nm and Pt@HGS 3–4 nm. TEM images of reference materials, activity data in sulphuric acid, thin-film degradation tests on a commercial Pt/C 1–2 nm catalyst as well as further IL-TEM data are also available together with the derivation of the equation for the average inter-particle distance.

Supporting Information File 1: Further experimental data.
Format: PDF Size: 929.4 KB Download

Cite the Following Article

Design criteria for stable Pt/C fuel cell catalysts
Josef C. Meier, Carolina Galeano, Ioannis Katsounaros, Jonathon Witte, Hans J. Bongard, Angel A. Topalov, Claudio Baldizzone, Stefano Mezzavilla, Ferdi Schüth and Karl J. J. Mayrhofer
Beilstein J. Nanotechnol. 2014, 5, 44–67. https://doi.org/10.3762/bjnano.5.5

How to Cite

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein J. Nanotechnol. 2014, 5, 44–67. doi:10.3762/bjnano.5.5

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pavlets, A.; Moguchikh, E.; Ya.V., A.; Pankov, I.; Yu.V., P.; Yu.A., B.; Nikolskiy, A.; Kozakov, A.; Alekseenko, A. Maximizing performance in the oxygen reduction reaction with nitrogen-supported bimetallic catalyst. Inorganic Chemistry Communications 2025, 181, 115244. doi:10.1016/j.inoche.2025.115244
  • Yoo, D.; Park, J.; Oh, S.; Park, S.; Kim, M. H.; Choi, Y.; Park, K. Impact of ionomer binder degradation on mass transport at high current densities in polymer electrolyte membrane fuel cell stack after 5,000 h dynamic load cycling. Journal of Power Sources 2025, 655, 237902. doi:10.1016/j.jpowsour.2025.237902
  • Paperzh, K.; Pankova, Y.; Moguchikh, E.; Pankov, I.; Aydakov, E.; Gerasimova, E.; Belmesov, A.; Alekseenko, A. Efficient PtRu/C anodes via CO-assisted synthesis: Toward high-activity and durable catalysts for hydrogen, CO, and methanol oxidation reactions. Journal of Power Sources 2025, 656, 238072. doi:10.1016/j.jpowsour.2025.238072
  • Cheng, J.; Yang, J.; Cheng, G.; Cheng, Z.; Lyu, C.; Li, X.; Geng, D.; Liu, Y. Mechanistic Insights into Proximity Effect‐Mediated Oxygen Reduction Reaction Performance Regulation by Platinum Nanoparticles. ChemSusChem 2025. doi:10.1002/cssc.202501167
  • Roiron, C.; Cosenza, A.; Ferro, G.; Chen, J. L.; Wang, H.; Atanassov, P. Carbon Catalyst Supports for Pt-Based Polymer Electrolyte Membrane Fuel Cells: Porosity, Graphitization, and Chemical Modifications. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, e08841. doi:10.1002/advs.202508841
  • Godoy, A. O.; Birnbach, M.; Jankovic, J. Identical-Location Electron Microscopy Applications for Electrode Materials in Electrochemical Energy Systems - Fuel Cells, Electrolyzers and Batteries - A Review. Small methods 2025, e02201. doi:10.1002/smtd.202402201
  • Li, A.; Liu, Y.; Zhang, Z.; Chen, H.; Qi, H.; Wang, Z.; Sui, X. In situ constructing a polyaniline layer on a Pt surface enhances the oxygen reduction activity and stability of Pt for fuel cells. Chemical communications (Cambridge, England) 2025, 61, 17360–17363. doi:10.1039/d5cc04886a
  • Belenov, S. V.; Novomlinskaya, I. A.; Moguchikh, E. A.; Nevelskaya, A. K.; Pavlets, A. S.; Pankov, I. V. PtCu/C electrocatalysts on different carbon supports: a comparative durability study at room and elevated temperatures. Journal of Applied Electrochemistry 2025. doi:10.1007/s10800-025-02379-x
  • Kamšek, A. R.; Ruiz-Zepeda, F.; Tabernik, D.; Vidergar, J.; Logar, A.; Kregar, A.; Skočaj, D.; Dražić, G.; Hodnik, N. Machine learning-assisted large-scale identical-location electron microscopy enables quantifying nanoparticulate electrocatalyst degradation. Springer Science and Business Media LLC 2025. doi:10.21203/rs.3.rs-7656978/v1
  • Liu, Q.; Liu, H.; Zhang, W.; Xu, Q.; Su, H. Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics. Catalysts 2025, 15, 871. doi:10.3390/catal15090871
  • Yang, D.; Kim, Y.-H.; Lee, H. J.; Yang, S.-H.; Jung, M.-H.; Park, E.-B.; Kim, H. S.; Jeon, Y.; Heo, Y.; Kim, K. H.; Cho, S.; Kang, Y. S.; Kim, K. K.; Lee, H.; Yim, S.-D.; Jang, J. H.; Lee, S.; Kim, Y.-M. Integrated probing of cycling-induced degradation of multi-component electrode in hydrogen fuel cells via machine learning-empowered spectroscopic imaging. Applied Catalysis B: Environment and Energy 2025, 382, 125911. doi:10.1016/j.apcatb.2025.125911
  • Fackler, S.; Hermann, J.; Kibler, L.; Jacob, T. Acetate adsorption on Pt(111): Implications for copper underpotential deposition and surface oxidation. Electrochimica Acta 2025, 542, 147354. doi:10.1016/j.electacta.2025.147354
  • Bord, J.; Rybicki, M.; Baldofski, M.; Jung, C.; Jacob, T. Theoretical Studies on the Adsorption and Degradation of Carbon-Supported Pt- and Pt-Oxide Nanoparticle Electrocatalysts. Small (Weinheim an der Bergstrasse, Germany) 2025, e05890. doi:10.1002/smll.202505890
  • Narayanan, N.; Ravichandran, B.; Emayavaramban, I.; Liu, H.; Su, H. Advancements in Non-Precious Metal Catalysts for High-Temperature Proton-Exchange Membrane Fuel Cells: A Comprehensive Review. Catalysts 2025, 15, 775. doi:10.3390/catal15080775
  • Tomc, B.; Bele, M.; Kamšek, A. R.; Martins, M.; Marsel, A.; Hotko, M.; Popović, S.; Kapun, G.; Donik, Č.; Kostelec, M.; Godec, M.; Hodnik, N.; Suhadolnik, L. Workflow and Practical Guidance for Identical Location Scanning Electron Microscopy: Reliable Tracking of Localized Transformations. Small methods 2025, 9, e01290. doi:10.1002/smtd.202501290
  • Li, Y. Proton Exchange Membrane Fuel Cells: Degradation Mechanism. Fuel Cell Fundamentals and Applications; Springer Nature Singapore, 2025; pp 329–400. doi:10.1007/978-981-96-9845-5_8
  • Lee, J.; Park, J.-H.; Choi, D.; Lee, K. R.; Lee, S.; Yoo, S. J. Ligand engineering at the precursor stage unlocks exceptional durability in PtCo@PtAu catalysts for heavy-duty PEMFCs. Applied Catalysis B: Environment and Energy 2025, 381, 125887. doi:10.1016/j.apcatb.2025.125887
  • He, B.; Wang, S.; Hu, X.; Wang, P.; Lu, W.; Wu, X.; Sui, B.; Liu, L.; Gong, X.; Hu, H.; Wang, J.; Shi, P.; Qiao, Z. Fuel cell-type sensors for the detection of pollution gases from marine industrial activities. Microchemical Journal 2025, 215, 114394. doi:10.1016/j.microc.2025.114394
  • Shih, K.-Y.; Chen, Z.-M. Microwave-assisted synthesis of graphene-supported PtFeCu nanoparticles for enhanced methanol oxidation in direct methanol fuel cells. Journal of Nanoparticle Research 2025, 27. doi:10.1007/s11051-025-06401-3
  • Grineva, D. E.; Zasypkina, A. A.; Mensharapov, R. M.; Spasov, D. D.; Panchenko, N. V.; Patsaev, T. D.; Dmitryakov, P. V.; Ivanova, N. A. Electrochemical Evaluation of Degradation Stability in Nanostructured Electrocatalysts Based on SiO2-modified Carbon Supports for PEM Fuel Cell Cathodes. Nanobiotechnology Reports 2025, 20, 231–238. doi:10.1134/s2635167624602067

Patents

  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. SUPPORTED PLATINUM PARTICLES AND THEIR USE AS CATALYST IN FUEL OR ELECTROLYSIS CELLS. EP 4239732 A2, Sept 6, 2023.
  • NESSELBERGER MARKUS; HASCHE FREDERIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. WO 2019081374 A1, May 2, 2019.
  • NESSELBERGER MARKUS; HASCHÉ FRÉDÉRIC; SCHÖFFLER RIANNE; EWEINER FLORIAN; NEUSCHÜTZ MARK. METHOD FOR PRODUCING SUPPORTED PLATINUM PARTICLES. EP 3473337 A1, April 24, 2019.
Other Beilstein-Institut Open Science Activities