One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach

Vincent Tiing Tiong, John Bell and Hongxia Wang
Beilstein J. Nanotechnol. 2014, 5, 438–446.

Cite the Following Article

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach
Vincent Tiing Tiong, John Bell and Hongxia Wang
Beilstein J. Nanotechnol. 2014, 5, 438–446.

How to Cite

Tiong, V. T.; Bell, J.; Wang, H. Beilstein J. Nanotechnol. 2014, 5, 438–446. doi:10.3762/bjnano.5.51

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Allawi, N. H.; Al-Jawad, S. M. H. Toward Phase Pure CZTS Film-Based Solar Cell Prepared by the One-Step Hydrothermal Method: Influence of Copper Concentration. ECS Journal of Solid State Science and Technology 2023, 12, 75001–075001. doi:10.1149/2162-8777/ace214
  • Henríquez, R.; Nogales, P. S.; Moreno, P. G.; Cartagena, E. M.; Bongiorno, P. L.; Navarrete-Astorga, E.; Dalchiele, E. A. One-Step Hydrothermal Synthesis of Cu2ZnSnS4 Nanoparticles as an Efficient Visible Light Photocatalyst for the Degradation of Congo Red Azo Dye. Nanomaterials (Basel, Switzerland) 2023, 13, 1731. doi:10.3390/nano13111731
  • Huang, Q.; Wang, Z.; Zhao, Y.; Wu, Y.; Tang, S.; Ji, G. A graphene-based compatible flexible film with ultra-wideband microwave absorption and low infrared emissivity. Composites Communications 2022, 35, 101349. doi:10.1016/j.coco.2022.101349
  • Yadav, A.; Follink, B.; Funston, A. M. Anion-Directed Synthesis of Core–Shell and Janus Hybrid Nanostructures. Chemistry of Materials 2022, 34, 8987–8998. doi:10.1021/acs.chemmater.2c02494
  • Dong, M. R.; Chai, X. H.; Xing, C.; Qing, H. M.; Shen, T.; Liu, J. K.; Zhu, Y. Microwave-assisted rapid facile synthesis of pure kesterite Cu2ZnSnS4 in mixed solvents. Journal of Materials Science: Materials in Electronics 2022, 33, 18252–18267. doi:10.1007/s10854-022-08682-z
  • Kim, W. J.; Cho, S.; Hong, J.; Hong, J. P. Hierarchically nanostructured 1D-2D flowerlike copper sulfide electrode for high-performance supercapacitor application by one-pot synthetic procedure. Applied Surface Science 2022, 578, 152086. doi:10.1016/j.apsusc.2021.152086
  • Baskaran, P.; Nisha, K.; Harish, S.; Ikeda, H.; Archana, J.; Navaneethan, M. Enhanced catalytic performance of Cu2ZnSnS4/MoS2 nanocomposites based counter electrode for Pt-free dye-sensitized solar cells. Journal of Alloys and Compounds 2022, 894, 162166. doi:10.1016/j.jallcom.2021.162166
  • Mukurala, N.; Mokurala, K.; Mohapatra, L.; Suman, S.; Kushwaha, A. Surface controlled synthesis of Cu2FeSnS4 particles for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy 2021, 46, 34689–34700. doi:10.1016/j.ijhydene.2021.08.033
  • Semalti, P.; Sharma, V.; Sharma, S. N. A novel method of water remediation of organic pollutants and industrial wastes by solution- route processed CZTS nanocrystals. Journal of Materiomics 2021, 7, 904–919. doi:10.1016/j.jmat.2021.04.005
  • Prabeesh, P.; Sajeesh, V. G.; Selvam, I. P.; Potty, S. N. Influence of thiourea in the precursor solution on the structural, optical and electrical properties of CZTS thin films deposited via spray coating technique. Journal of Materials Science: Materials in Electronics 2021, 32, 4146–4156. doi:10.1007/s10854-020-05156-y
  • Sadanand; Dwivedi, D. K. Modeling of CZTSSe solar photovoltaic cell for window layer optimization. Optik 2020, 222, 165407. doi:10.1016/j.ijleo.2020.165407
  • You, Y.; Qu, K.; Shi, C.; Sun, Z.; Huang, Z.; Li, J.; Dong, M.; Guo, Z. Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. International journal of biological macromolecules 2020, 162, 310–319. doi:10.1016/j.ijbiomac.2020.06.169
  • Tikote, K.; More, M. A.; Chaure, N. B. Polycrystalline and stoichiometric growth of CZTS by hydrothermal method. In DAE SOLID STATE PHYSICS SYMPOSIUM 2019, AIP Publishing, 2020; pp 030669 ff. doi:10.1063/5.0022443
  • Singh, A.; Manivannan, R.; Victoria, S. N. Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications. Arabian Journal of Chemistry 2019, 12, 2439–2447. doi:10.1016/j.arabjc.2015.03.013
  • Aruna-Devi, R.; Latha, M.; Velumani, S.; Chávez-Carvayar, J. Structural and optical properties of CZTS nanoparticles prepared by a colloidal process. Rare Metals 2019, 40, 2602–2609. doi:10.1007/s12598-019-01288-1
  • Zaman, M. B.; Mir, R. A.; Poolla, R. Growth and properties of solvothermally derived highly crystalline Cu2ZnSnS4 nanoparticles for photocatalytic and electrocatalytic applications. International Journal of Hydrogen Energy 2019, 44, 23023–23033. doi:10.1016/j.ijhydene.2019.07.026
  • Aruna-Devi, R.; Latha, M.; Velumani, S.; Santos-Cruz, J.; Murali, B.; Chávez-Carvayar, J.; Pulgarín-Agudelo, F.; Vigil-Galán, O. Cu2ZnSn(S,Se)4 thin-films prepared from selenized nanocrystals ink. RSC advances 2019, 9, 18420–18428. doi:10.1039/c9ra02669j
  • Trifiletti, V.; Mostoni, S.; Butrichi, F.; Acciarri, M.; Binetti, S.; Scotti, R. Study of Precursor-Inks Designed for High-Quality Cu2ZnSnS4 Films for Low-Cost PV Application. ChemistrySelect 2019, 4, 4905–4912. doi:10.1002/slct.201900170
  • Yu, F.; Tiong, V. T.; Pang, L.; Zhou, R.; Wang, X.; Waclawik, E. R.; Ostrikov, K.; Wang, H. Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters 2019, 30, 1115–1120. doi:10.1016/j.cclet.2019.01.004
  • Aruna-Devi, R.; Latha, M.; Velumani, S.; Santoyo-Salazar, J.; Santos-Cruz, J. Telescoping synthesis and goldilocks of CZTS nanocrystals. Materials Research Bulletin 2019, 111, 342–349. doi:10.1016/j.materresbull.2018.11.039
Other Beilstein-Institut Open Science Activities