Constant chemical potential approach for quantum chemical calculations in electrocatalysis

Wolfgang B. Schneider and Alexander A. Auer
Beilstein J. Nanotechnol. 2014, 5, 668–676. https://doi.org/10.3762/bjnano.5.79

Cite the Following Article

Constant chemical potential approach for quantum chemical calculations in electrocatalysis
Wolfgang B. Schneider and Alexander A. Auer
Beilstein J. Nanotechnol. 2014, 5, 668–676. https://doi.org/10.3762/bjnano.5.79

How to Cite

Schneider, W. B.; Auer, A. A. Beilstein J. Nanotechnol. 2014, 5, 668–676. doi:10.3762/bjnano.5.79

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Le, J.-B.; Yang, X.-H.; Zhuang, Y.-B.; Wang, F.; Cheng, J. Atomic‐Scale Modelling of Electrochemical Systems; Wiley, 2021; pp 173–200. doi:10.1002/9781119605652.ch5
  • Hagiwara, S.; Hu, C.; Nishihara, S.; Otani, M. Bias-dependent diffusion of a H 2 O molecule on metal surfaces by the first-principles method under the grand-canonical ensemble. Physical Review Materials 2021, 5, 065001. doi:10.1103/physrevmaterials.5.065001
  • Iida, K. Electric Field Effect on Graphene/Organic Interface under Bias Voltage. Chemistry Letters 2020, 49, 1117–1120. doi:10.1246/cl.200349
  • Chen, M.; Smart, T. J.; Wang, S.; Kou, T.; Lin, D.; Ping, Y.; Li, Y. The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A 2020, 8, 8783–8812. doi:10.1039/d0ta02549f
  • Groß, A. Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. Handbook of Materials Modeling; Springer International Publishing, 2020; pp 1439–1472. doi:10.1007/978-3-319-44680-6_7
  • Groß, A. Surface and Interface Science; Wiley, 2020; pp 471–515. doi:10.1002/9783527680603.ch56
  • Iida, K. Theoretical Study on Response of Nanointerface Systems to Light and Voltage Bias. Molecular Science 2020, 14, A0110. doi:10.3175/molsci.14.a0110
  • Singh, P.; Kumar, D.; Vishvakarma, V. K.; Yadav, P.; Jayaraj, A.; Kumari, K. Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon 2019, 5, e02795. doi:10.1016/j.heliyon.2019.e02795
  • Poidevin, C.; Paciok, P.; Heggen, M.; Auer, A. A. High resolution transmission electron microscopy and electronic structure theory investigation of platinum nanoparticles on carbon black. The Journal of chemical physics 2018, 150, 041705. doi:10.1063/1.5047666
  • Delle Site, L. Simulation of many-electron systems that exchange matter with the environment. Advanced Theory and Simulations 2018, 1, 1800056. doi:10.1002/adts.201800056
  • Groß, A. Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. Handbook of Materials Modeling; Springer International Publishing, 2018; pp 1–34. doi:10.1007/978-3-319-50257-1_7-1
  • Groß, A. Handbook of Materials Modeling - Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. 2018; pp 1439–1472.
  • Delle Site, L. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency. Computer Physics Communications 2018, 222, 94–101. doi:10.1016/j.cpc.2017.09.020
  • Delle Site, L.; Praprotnik, M. Molecular systems with open boundaries: Theory and simulation. Physics Reports 2017, 693, 1–56. doi:10.1016/j.physrep.2017.05.007
  • Skúlason, E.; Jónsson, H. Atomic scale simulations of heterogeneous electrocatalysis: recent advances. Advances in Physics: X 2017, 2, 481–495. doi:10.1080/23746149.2017.1308230
  • Iida, K.; Noda, M.; Nobusada, K. Development of theoretical approach for describing electronic properties of hetero-interface systems under applied bias voltage. The Journal of chemical physics 2017, 146, 084706. doi:10.1063/1.4976970
  • Behm, R. J. Electrocatalysis on the nm scale. Beilstein journal of nanotechnology 2015, 6, 1008–1009. doi:10.3762/bjnano.6.103
  • Iida, K.; Noda, M.; Nobusada, K. Theoretical approach for optical response in electrochemical systems: application to electrode potential dependence of surface-enhanced Raman scattering. The Journal of chemical physics 2014, 141, 124124. doi:10.1063/1.4896537
Other Beilstein-Institut Open Science Activities