An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

Elnaz Akbari, Vijay K. Arora, Aria Enzevaee, Mohamad. T. Ahmadi, Mehdi Saeidmanesh, Mohsen Khaledian, Hediyeh Karimi and Rubiyah Yusof
Beilstein J. Nanotechnol. 2014, 5, 726–734. https://doi.org/10.3762/bjnano.5.85

Cite the Following Article

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications
Elnaz Akbari, Vijay K. Arora, Aria Enzevaee, Mohamad. T. Ahmadi, Mehdi Saeidmanesh, Mohsen Khaledian, Hediyeh Karimi and Rubiyah Yusof
Beilstein J. Nanotechnol. 2014, 5, 726–734. https://doi.org/10.3762/bjnano.5.85

How to Cite

Akbari, E.; Arora, V. K.; Enzevaee, A.; Ahmadi, M. T.; Saeidmanesh, M.; Khaledian, M.; Karimi, H.; Yusof, R. Beilstein J. Nanotechnol. 2014, 5, 726–734. doi:10.3762/bjnano.5.85

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jain, S.; Shah, A. P.; Shimpi, N. G. Carbon nanomaterials-based gas sensors. Carbon-Based Nanomaterials and Nanocomposites for Gas Sensing; Elsevier, 2023; pp 25–49. doi:10.1016/b978-0-12-821345-2.00001-2
  • Deng, Y.; Liu, L.; Li, J.; Gao, L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. Biosensors 2022, 12, 776. doi:10.3390/bios12100776
  • Shivakumar, A.; Krishna, H. Monoelements; Wiley, 2020; pp 169–233. doi:10.1002/9781119655275.ch8
  • Boustani, I. Nanosensors and Fullerens. Molecular Modelling and Synthesis of Nanomaterials; Springer International Publishing, 2020; pp 555–589. doi:10.1007/978-3-030-32726-2_10
  • Hosseingholipourasl, A.; Ariffin, S. H. S.; Al-Otaibi, Y. D.; Akbari, E.; Hamid, F. K. H.; Koloor, S. S. R.; Petrů, M. Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors (Basel, Switzerland) 2020, 20, 1506. doi:10.3390/s20051506
  • Hosseingholipourasl, A.; Ariffin, S. H. S.; Ahmadi, M. T.; Koloor, S. S. R.; Petrů, M.; Hamzah, A. An Analytical Conductance Model for Gas Detection Based on a Zigzag Carbon Nanotube Sensor. Sensors (Basel, Switzerland) 2020, 20, 357. doi:10.3390/s20020357
  • Hosseingholipourasl, A.; Ariffin, S. H. S.; Koloor, S. S. R.; Petru, M.; Hamzah, A. Analytical Prediction of Highly Sensitive CNT-FET-Based Sensor Performance for Detection of Gas Molecules. IEEE Access 2020, 8, 12655–12661. doi:10.1109/access.2020.2965806
  • Orzechowska, S.; Mazurek, A.; Świsłocka, R.; Lewandowski, W. Electronic Nose: Recent Developments in Gas Sensing and Molecular Mechanisms of Graphene Detection and Other Materials. Materials (Basel, Switzerland) 2019, 13, 80. doi:10.3390/ma13010080
  • Hoque, E.; Chowdhury, T.; Kruse, P. Chemical in situ modulation of doping interactions between oligoanilines and nanocarbon films. Surface Science 2018, 676, 61–70. doi:10.1016/j.susc.2018.01.003
  • Sahihazar, M. M.; Nouri, M.; Rahmani, M.; Ahmadi, M. T.; Kasani, H. Fabrication of Carbon Nanoparticle Strand under Pulsed Arc Discharge. Plasmonics 2018, 13, 2377–2386. doi:10.1007/s11468-018-0764-9
  • Kruse, P. Review on water quality sensors. Journal of Physics D: Applied Physics 2018, 51, 203002. doi:10.1088/1361-6463/aabb93
  • Tung, T. T.; Nine, J.; Krebsz, M.; Pasinszki, T.; Coghlan, C. J.; Tran, D. N. H.; Losic, D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials 2017, 27, 1702891. doi:10.1002/adfm.201702891
  • Janudin, N.; Abdullah, L. C.; Abdullah, N.; Yasin, F. M.; Saidi, N. M.; Kasim, N. A. M. Comparison and characterization of acid functionalization of multi walled carbon nanotubes using various methods. Solid State Phenomena 2017, 264, 83–86. doi:10.4028/www.scientific.net/ssp.264.83
  • Vargas-Bernal, R. Modeling, Design, and Applications of the Gas Sensors Based on Graphene and Carbon Nanotubes. Materials Science and Engineering; IGI Global, 2017; pp 920–946. doi:10.4018/978-1-5225-1798-6.ch037
  • Vargas-Bernal, R. Modeling, Design, and Applications of the Gas Sensors Based on Graphene and Carbon Nanotubes. Handbook of Research on Nanoelectronic Sensor Modeling and Applications; IGI Global, 2017; pp 181–207. doi:10.4018/978-1-5225-0736-9.ch007
  • Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-micro letters 2015, 8, 95–119. doi:10.1007/s40820-015-0073-1
  • Khaledian, M.; Ismail, R.; Akbari, E. Analytical Modeling and Artificial Neural Network (ANN) Simulation of Current-Voltage Characteristics in Graphene Nanoscroll Based Gas Sensors. Plasmonics 2015, 10, 1713–1722. doi:10.1007/s11468-015-9967-5
  • Ghadiry, M.; Ismail, R.; Naraghi, B.; Abed, S. T.; Kavosi, D.; Fotovatikhah, F. A new approach to model sensitivity of graphene-based gas sensors. Semiconductor Science and Technology 2015, 30, 045012. doi:10.1088/0268-1242/30/4/045012
  • Khaledian, M.; Ismail, R.; Saeidmanesh, M.; Ghadiry, M.; Akbari, E. Sensitivity Modelling of Graphene Nanoscroll-Based NO 2 Gas Sensors. Plasmonics 2015, 10, 1133–1140. doi:10.1007/s11468-015-9905-6
  • Khaledian, M.; Ismail, R.; Saeidmanesh, M.; Khaledian, P. Analytical modeling of the sensing parameters for graphene nanoscroll-based gas sensors. RSC Advances 2015, 5, 54700–54709. doi:10.1039/c5ra01150g
Other Beilstein-Institut Open Science Activities