Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt

Sylvain Brimaud, Zenonas Jusys and R. Jürgen Behm
Beilstein J. Nanotechnol. 2014, 5, 735–746. https://doi.org/10.3762/bjnano.5.86

Cite the Following Article

Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt
Sylvain Brimaud, Zenonas Jusys and R. Jürgen Behm
Beilstein J. Nanotechnol. 2014, 5, 735–746. https://doi.org/10.3762/bjnano.5.86

How to Cite

Brimaud, S.; Jusys, Z.; Behm, R. J. Beilstein J. Nanotechnol. 2014, 5, 735–746. doi:10.3762/bjnano.5.86

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farias, M. J. S.; Silva, A. L. P.; Tanaka, A. A.; Herrero, E.; Feliu, J. M. Surface Defects as Ingredients That Can Improve or Inhibit the Pathways for CO Oxidation at Low Overpotentials Using Pt(111)-Type Catalysts. The Journal of Physical Chemistry C 2020, 124, 26583–26595. doi:10.1021/acs.jpcc.0c07104
  • Lozeman, J. J.; Führer, P.; Olthuis, W.; Odijk, M. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. The Analyst 2020, 145, 2482–2509. doi:10.1039/c9an02105a
  • Zeng, R.; Yang, Y.; Shen, T.; Wang, H.; Xiong, Y.; Zhu, J.; Wang, D.; Abruña, H. D. Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. ACS Catalysis 2019, 10, 770–776. doi:10.1021/acscatal.9b04344
  • Dourado, A. H.; Arenz, M.; de Torresi, S. I. C. Mechanism of Electrochemical L-Cysteine Oxidation on Pt. ChemElectroChem 2019, 6, 1009–1013. doi:10.1002/celc.201801575
  • Farias, M. J. S.; Cheuquepán, W.; Tanaka, A. A.; Feliu, J. M. Requirement of initial long-range substrate structure in unusual CO pre-oxidation on Pt(111) electrodes. Electrochemistry Communications 2018, 97, 60–63. doi:10.1016/j.elecom.2018.10.019
  • Cruz, L. G.; Montiel, V.; Solla-Gullón, J. Shape-controlled metal nanoparticles for electrocatalytic applications. Physical Sciences Reviews 2018, 4. doi:10.1515/psr-2017-0124
  • Braunschweig, B.; Mukherjee, P.; Haan, J. L.; Dlott, D. D. Vibrational sum-frequency generation study of the CO2 electrochemical reduction at Pt/EMIM-BF4 solid/liquid interfaces. Journal of Electroanalytical Chemistry 2017, 800, 144–150. doi:10.1016/j.jelechem.2016.10.035
  • McPherson, I. J.; Ash, P. A.; Jones, L.; Varambhia, A.; Jacobs, R. M. J.; Vincent, K. A. Electrochemical CO Oxidation at Platinum on Carbon Studied Through Analysis of Anomalous In Situ IR Spectra. The journal of physical chemistry. C, Nanomaterials and interfaces 2017, 121, 17176–17187. doi:10.1021/acs.jpcc.7b02166
  • Weber, I.; Solla-Gullón, J.; Brimaud, S.; Feliu, J. M.; Behm, R. J. Structure, surface chemistry and electrochemical de-alloying of bimetallic PtxAg100-x nanoparticles: Quantifying the changes in the surface properties for adsorption and electrocatalytic transformation upon selective Ag removal. Journal of Electroanalytical Chemistry 2017, 793, 164–173. doi:10.1016/j.jelechem.2016.11.062
  • Wang, H.; Zhou, Y.-W.; Cai, W.-B. Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry. Current Opinion in Electrochemistry 2017, 1, 73–79. doi:10.1016/j.coelec.2017.01.008
  • Farias, M. J. S.; Busó-Rogero, C.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Camara, G. A.; Feliu, J. M. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. Langmuir : the ACS journal of surfaces and colloids 2017, 33, 865–871. doi:10.1021/acs.langmuir.6b03612
  • Lee, J.-Y.; Han, S.-B.; Kwak, D.-H.; Kim, M.-C.; Lee, S.; Park, J.-Y.; Choi, I.-A.; Park, H.-S.; Park, K.-W. Porous Cu-rich@Cu3Pt alloy catalyst with a low Pt loading for enhanced electrocatalytic reactions. Journal of Alloys and Compounds 2017, 691, 26–33. doi:10.1016/j.jallcom.2016.08.221
  • Fischer, J. M. T. A.; Mahlberg, D.; Roman, T.; Groß, A. Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proceedings. Mathematical, physical, and engineering sciences 2016, 472, 20160618. doi:10.1098/rspa.2016.0618
  • Sakong, S.; Groß, A. The Importance of the Electrochemical Environment in the Electro-Oxidation of Methanol on Pt(111). ACS Catalysis 2016, 6, 5575–5586. doi:10.1021/acscatal.6b00931
  • Vidal-Iglesias, F. J.; Solla-Gullón, J.; Feliu, J. M. Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. Nanostructure Science and Technology; Springer International Publishing, 2016; pp 31–92. doi:10.1007/978-3-319-29930-3_2
  • Busó-Rogero, C.; Brimaud, S.; Solla-Gullón, J.; Vidal-Iglesias, F. J.; Herrero, E.; Behm, R. J.; Feliu, J. M. Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. Journal of Electroanalytical Chemistry 2016, 763, 116–124. doi:10.1016/j.jelechem.2015.12.034
  • Vidal-Iglesias, F. J.; Montiel, V.; Solla-Gullón, J. Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles. Journal of Solid State Electrochemistry 2015, 20, 1107–1118. doi:10.1007/s10008-015-2954-0
  • Behm, R. J. Electrocatalysis on the nm scale. Beilstein journal of nanotechnology 2015, 6, 1008–1009. doi:10.3762/bjnano.6.103
  • Zhu, H.; Zhang, S.; Su, D.; Jiang, G.; Sun, S. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small (Weinheim an der Bergstrasse, Germany) 2015, 11, 3545–3549. doi:10.1002/smll.201500330
Other Beilstein-Institut Open Science Activities