Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

Stanislav N. Gorb and Alexander E. Filippov
Beilstein J. Nanotechnol. 2014, 5, 837–845. https://doi.org/10.3762/bjnano.5.95

Supporting Information

Movie 1: Behaviour of the model array of setae/fibers, which have short soft ends and stiff bases during attachment-detachment cycle (a). Different stiffness of the segments of fibers is conditionally shown by different colors. Stiff, medium and soft segments are marked by black, red and green circles respectively. The subplots in the bottom (from left to right) show time dependent vertical force, evolution of the array of distances dxj = xj+1xj between contact ends of nearest neighbors and instant histogram P(dx) of the distribution of these distances. It is seen directly from the movie, how the system deforms near the surface and how it gradually returns back to the original state after detachment.

Movie 2: The same as Movie 1 for the array of long soft fibers. The colors and subplots are the same as those in the Movie 1. In contrast to the previous case, this system cannot overcome strong deformations of mutually glued filaments and does not return to the original unperturbed state.

Movie 3: The same as the previous Movies 1 and 2 for hard fibers softly connected with the bottom plate by few soft intermediate segments. Despite of stiffness of the filaments the structure is still able to adapt to the surface due to fiber rotation around their soft parts. As result, system gets quite satisfactory attachment to the rough surface, but it practically does not return back to the initial unperturbed state after detachment.

Supporting Information File 1: Movies 1–3.
Format: ZIP Size: 10.1 MB Download

Cite the Following Article

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects
Stanislav N. Gorb and Alexander E. Filippov
Beilstein J. Nanotechnol. 2014, 5, 837–845. https://doi.org/10.3762/bjnano.5.95

How to Cite

Gorb, S. N.; Filippov, A. E. Beilstein J. Nanotechnol. 2014, 5, 837–845. doi:10.3762/bjnano.5.95

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Salerno, G.; Rebora, M.; Gorb, E.; Gorb, S. Mechanoecology: biomechanical aspects of insect-plant interactions. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 2024. doi:10.1007/s00359-024-01698-2
  • Lei, M.; Liao, H.; Wang, S.; Zhou, H.; Zhu, J.; Wan, H.; Payne, G. F.; Liu, C.; Qu, X. Electro-Sorting Create Heterogeneity: Constructing A Multifunctional Janus Film with Integrated Compositional and Microstructural Gradients for Guided Bone Regeneration. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2024, 11, e2307606. doi:10.1002/advs.202307606
  • Wang, L.-Y.; Lin, C.-P.; Gorb, S. N.; Rajabi, H. Strong attachment as an adaptation of flightless weevils on windy oceanic islands. Journal of the Royal Society, Interface 2023, 20, 20230447. doi:10.1098/rsif.2023.0447
  • Pragya, A.; Ghosh, T. K. Soft Functionally Gradient Materials and Structures - Natural and Manmade: A Review. Advanced materials (Deerfield Beach, Fla.) 2023, 35, e2300912. doi:10.1002/adma.202300912
  • Zhang, W.; Jiang, W.; Zhang, C.; Qin, X.; Zheng, H.; Xu, W.; Cui, M.; Wang, B.; Wu, J.; Wang, Z. Honeybee comb-inspired stiffness gradient-amplified catapult for solid particle repellency. Nature nanotechnology 2023, 19, 219–225. doi:10.1038/s41565-023-01524-x
  • Büscher, T. H.; Harper, J. R.; Sripada, N.; Gorb, S. N.; Edgerly, J. S.; Büsse, S. Morphological and Behavioral Adaptations of Silk-Lovers (Plokiophilidae: Embiophila) for Their Lifestyle in the Silk Domiciles of Webspinners (Embioptera). Diversity 2023, 15, 415. doi:10.3390/d15030415
  • Zhu, X.; Wang, S.; Qin, R. The effect of surface tension on the adhesion performance of nanoscale fibrillary structures——a theoretical prediction. European Journal of Mechanics - A/Solids 2022, 96, 104746. doi:10.1016/j.euromechsol.2022.104746
  • Bergmann, J. B.; Moatsou, D.; Steiner, U.; Wilts, B. D. Bio-inspired materials to control and minimise insect attachment. Bioinspiration & biomimetics 2022, 17, 51001–051001. doi:10.1088/1748-3190/ac91b9
  • Gorb, S. N.; Wildermuth, H.; Kohl, S.; Büsse, S. Tarsal attachment structures of the biting midge Forcipomyia paludis (Diptera: Ceratopogonidae), a specialized ectoparasite of Odonata imagines. Zoomorphology 2022, 141, 297–306. doi:10.1007/s00435-022-00561-9
  • Wei, J.; Liang, Y.; Chen, X.; Gorb, S. N.; Wu, Z.; Li, H.; Wu, J. Enhanced Flexibility of the Segmented Honey Bee Tongue with Hydrophobic Tongue Hairs. ACS applied materials & interfaces 2022, 14, 12911–12919. doi:10.1021/acsami.2c00431
  • Sameoto, D.; Khungura, H.; Benvidi, F. H.; Asad, A.; Liang, T.; Bacca, M. Space applications for gecko-inspired adhesives. Biomimicry for Aerospace; Elsevier, 2022; pp 423–458. doi:10.1016/b978-0-12-821074-1.00016-5
  • Ni, K.; Shao, Q.; Wang, K.; Wang, Z. Theoretical optimization of functional graded micropillars for strong and durable bioinspired dry adhesion. Mechanics of Advanced Materials and Structures 2021, 29, 7723–7731. doi:10.1080/15376494.2021.2006375
  • Ni, K.; Shao, Q.; Wang, K.; Wang, Z. Theoretical optimization of functional graded micropillars for strong and durable bioinspired dry adhesion. Mechanics of Advanced Materials and Structures 2021, 1–9.
  • Benvidi, F. H.; Bacca, M. Theoretical Limits in Detachment Strength for Axisymmetric Bi-Material Adhesives. Journal of Applied Mechanics 2021, 88. doi:10.1115/1.4052107
  • Arzt, E.; Quan, H.; McMeeking, R. M.; Hensel, R. Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science 2021, 120, 100823. doi:10.1016/j.pmatsci.2021.100823
  • Arzt, E.; Quan, H.; McMeeking, R. M.; Hensel, R. Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science 2021, 119, 100778. doi:10.1016/j.pmatsci.2021.100778
  • Khungura, H.; Bacca, M. Optimal Load Sharing in Bioinspired Fibrillar Adhesives: Asymptotic Solution. Journal of Applied Mechanics 2020, 88, 031004. doi:10.1115/1.4047859
  • Zenone, A.; Filippov, A. E.; Kovalev, A.; Badalamenti, F.; Gorb, S. N. Root Hair Adhesion in Posidonia oceanica (L.) Delile Seedlings: A Numerical Modelling Approach. Frontiers in Mechanical Engineering 2020, 6. doi:10.3389/fmech.2020.590894
  • Dong, X.; Zhao, H.; Li, J.; Tian, Y.; Zeng, H.; Ramos, M. A.; Hu, T. S.; Xu, Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020, 23, 101749. doi:10.1016/j.isci.2020.101749
  • Flenner, S.; Schaber, C. F.; Krasnov, I.; Stieglitz, H.; Rosenthal, M.; Burghammer, M.; Gorb, S. N.; Müller, M. Multiple Mechanical Gradients are Responsible for the Strong Adhesion of Spider Attachment Hair. Advanced materials (Deerfield Beach, Fla.) 2020, 32, 2002758. doi:10.1002/adma.202002758
Other Beilstein-Institut Open Science Activities