Volcano plots in hydrogen electrocatalysis – uses and abuses

Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854. https://doi.org/10.3762/bjnano.5.96

Cite the Following Article

Volcano plots in hydrogen electrocatalysis – uses and abuses
Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854. https://doi.org/10.3762/bjnano.5.96

How to Cite

Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Beilstein J. Nanotechnol. 2014, 5, 846–854. doi:10.3762/bjnano.5.96

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Shen, Y.-C.; Chang, C.-C.; Sahu, D. R.; Chu, W.-H.; Chen, C.-L.; Su, W.-N.; Huang, J.-L.; Wang, S.-C.; Shen, Y.-M. Structural evolution and electrocatalytic mechanism of bimetallic nickel–molybdenum/g-C3N4 composites in alkaline hydrogen evolution reaction: XAS and operando TEM study. International Journal of Hydrogen Energy 2025, 190, 152249. doi:10.1016/j.ijhydene.2025.152249
  • Tie, J.; Bannert, F.; Köhler, K.; Christensen, E.; Bjerrum, N. J. An electrochemical autoclave cell to investigate water electrolysis in molten salt electrolytes at elevated temperatures and pressures. Journal of Power Sources 2025, 657, 238146. doi:10.1016/j.jpowsour.2025.238146
  • Cruz, J.; Solis, B. P.; Uitz, K. G.; Gurrola, M. doi:10.1002/9783527850273.ch15
  • Li, X.; Dong, K.; Sidra, S.; Kim, D. H.; Tran, D. T.; Kim, N. H.; Lee, J. H. Atomic Pt-Promoted Hierarchical CoP@CNTs-Bridged CeO2-CoP Heterostructure-Based Hollow Microcubes for Water Electrolysis. Small (Weinheim an der Bergstrasse, Germany) 2025, e07407. doi:10.1002/smll.202507407
  • Alkhaldi, R. S.; Adebunmi, M. A.; Gondal, M. A.; Mohamed, M. J. S.; Almessiere, M. A.; Baykal, A.; Alsayoud, A. Synergistic electronic tuning and active site optimization in bimetallic Pt-Pd-Doped ZnCo₂O₄ spinel nanoelectrocatalyst for boosted electrocatalytic green hydrogen evolution supported by DFT. Journal of colloid and interface science 2025, 703, 139249. doi:10.1016/j.jcis.2025.139249
  • Sekar, U.; Radhakrishnan, J.; Biswas, K. A review on the cooperative effect of intimate interfacial TMD/MXene (2D/2D) heterostructures for an enhanced electrocatalytic hydrogen evolution reaction. Sustainable Energy & Fuels 2025, 9, 5399–5431. doi:10.1039/d5se00408j
  • Sheng, Y.; Zhu, W.; Li, Z.; Li, S.; Shao, L.; Wang, J. Pulse electrodeposited NiMoZn alloy hydrophobicized with PTFE for high performance alkaline water electrolysis. Chinese Journal of Chemical Engineering 2025, 86, 254–266. doi:10.1016/j.cjche.2025.09.007
  • Janjani, P.; Swan, H. B.; Dy, L.; Sarkar, A.; Bentley, C. L. Enabling Alkaline Scanning Electrochemical Cell Microscopy (SECCM) for the Study of Water-Splitting Electrocatalysts. Analytical chemistry 2025, 97, 21030–21040. doi:10.1021/acs.analchem.5c04020
  • Martínez-Hincapié, R.; Timoshenko, J.; Wagner, T.; Ortega, E.; Druce, J.; Monteiro, M. C. O.; Rüscher, M.; Jang, J.; Alagöz, E. Ö.; Lasagna, S.; Jacobse, L.; Bergmann, A.; Cuenya, B. R.; Oener, S. Z. Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction. Nature chemistry 2025. doi:10.1038/s41557-025-01932-7
  • Ryabicheva, M.; Zhigalenok, Y.; Abdimomyn, S.; Skakov, M.; Miniyazov, A.; Zhanbolatova, G.; Mukhamedova, N.; Ospanova, Z.; Djenizian, T.; Malchik, F. From lab to market: Economic viability of modern hydrogen evolution reaction catalysts. Fuel 2025, 395, 135227. doi:10.1016/j.fuel.2025.135227
  • Kubota, J.; Liu, J.; Detsi, E. Catalytic enhancement of hydrogen generation through the nanoporous zinc-water reaction. Scripta Materialia 2025, 270, 116941. doi:10.1016/j.scriptamat.2025.116941
  • Adebunmi, M. A.; Alkhaldi, R. S.; Gondal, M.; Alsayoud, A.; Mohamed, M. J. S.; Almessiere, M. A.; Baykal, A. Palladium-doped bimetallic sulfide spinel nano-electrocatalyst grown on nickel foam for efficient green hydrogen production validated by first principal DFT study. Renewable Energy 2025, 256, 124279. doi:10.1016/j.renene.2025.124279
  • Jeong, S. W.; Kim, J. H.; Lee, S.; Kim, H.; Park, H. J.; Yang, H.; Lee, S.; Cho, S. Basal and edge plane activity of two-dimensional Dirac semimetal NiTe2 for hydrogen evolution reaction. Chemical Engineering Journal 2025, 518, 164789. doi:10.1016/j.cej.2025.164789
  • Smiljanić, M.; Bele, M.; Pavko, L.; Hrnjić, A.; Ruiz-Zepeda, F.; Bijelić, L.; Kamšek, A.; Nuhanović, M.; Marsel, A.; Gašparič, L.; Kokalj, A.; Hodnik, N. Titanium oxynitride-supported Ru nanoparticles as exceptional electrocatalysts for alkaline hydrogen evolution reaction. Chemical Engineering Journal 2025, 517, 164204. doi:10.1016/j.cej.2025.164204
  • Zhang, Y.; Shen, Y. Efficient electrosynthesis of valeric acid from levulinic acid using indium nanoparticles. Fuel 2025, 394, 135153. doi:10.1016/j.fuel.2025.135153
  • Polsky, A.; Clary, J.; Oliveira, A. M.; Wang, T.; Vigil-Fowler, D.; Wang, L.; Yan, Y. Impact of processing humidity on ionomer film structure and performance in hydroxide exchange membrane electrolyzers. Communications Materials 2025, 6. doi:10.1038/s43246-025-00900-5
  • Chandran M, A.; Dutta, P.; Singh, A. K.; Prasad, B. L. V. Platinum-Free Electrocatalysts Based on Electrodeposited Co–Mn–Ni Alloys for Efficient Electrocatalytic Alkaline Water Splitting. ACS Applied Energy Materials 2025, 8, 11633–11642. doi:10.1021/acsaem.5c01775
  • Guo, W.; Zhao, G.; Sun, Z.; Zhang, B.; Xin, D.; Gao, M.; Liu, Y.; Zhuang, Z.; Liang, H.-W.; Pan, H.; Sun, W. Decoupling fast hydrogen oxidation reaction on a tandem electrocatalyst. Nature communications 2025, 16, 6741. doi:10.1038/s41467-025-62160-8
  • Chang, Y.; Ran, G.; Cheng, X.; Yang, Z.; Song, H.; Zhang, Y.; Chen, Y.; Zhou, W.; Wang, J.; Li, H. Interfacial electron transfer triggered reversible hydrogen spillover effect boosts high-efficient hydrogen evolution. Journal of colloid and interface science 2025, 700, 138452. doi:10.1016/j.jcis.2025.138452
  • Fotso, L. E. K.; Mehmood, S.; Rani, J. V.; Dutta, J.; Pal, U. Advances and Outlook of Nickel‐Based MOFs–LDHs Materials for Energy Conversion. Advanced Sustainable Systems 2025, 9. doi:10.1002/adsu.202500483

Patents

  • SMILJANIC MILUTIN; HODNIK NEJC; BELE MARIAN. RU NANOPARTICLES SUPPORTED ON TITANIUM OXYNITRIDE AS EFFICIENT CATALYSTS FOR ALKALINE HYDROGEN EVOLUTION REACTION. EP 4603181 A1, Aug 20, 2025.
  • BELE MARJAN; SMILJANIC MILUTIN; HODNIK NEJC. Ru nanoparticles supported on titanium oxynitride as efficient catalysts for alkaline hydrogen evolution reaction. LU 506394 B1, Aug 14, 2025.
  • FELSER CLAUDIA; SUN YAN. METHOD FOR EVALUATING A CATALYST. EP 3798333 A1, March 31, 2021.
Other Beilstein-Institut Open Science Activities