Cite the Following Article
Volcano plots in hydrogen electrocatalysis – uses and abuses
Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854.
https://doi.org/10.3762/bjnano.5.96
How to Cite
Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Beilstein J. Nanotechnol. 2014, 5, 846–854. doi:10.3762/bjnano.5.96
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Zhao, K.; Xiang, N.; Wang, Y.-Q.; Ye, J.; Jin, Z.; Fu, L.; Chang, X.; Wang, D.; Xiao, H.; Xu, B. A molecular design strategy to enhance hydrogen evolution on platinum electrocatalysts. Nature Energy 2025. doi:10.1038/s41560-025-01754-4
- Jwa, E.; Kim, S.; Jeong, N.; Han, S.; Song, M. J.; Kang, S.; Nam, J.-Y. Enhanced hydrogen production in zero-gap bipolar membrane microbial electrolysis with binderless cathodes in real wastewater. Chemical Engineering Journal 2025, 509, 161416. doi:10.1016/j.cej.2025.161416
- Gueskine, V.; Ding, P.; Crispin, R.; Vagin, M. Overcoming dichotomy between surface and bulk of electrode: conducting polymers. Current Opinion in Electrochemistry 2025, 101691. doi:10.1016/j.coelec.2025.101691
- Zhang, Y.; Shen, Y. Efficient electrosynthesis of valeric acid from levulinic acid using indium nanoparticles. Fuel 2025, 394, 135153. doi:10.1016/j.fuel.2025.135153
- Song, H.; Cui, Y.-F.; Zhao, N.; Li, W.; Huang, S.; Yang, H. Y. Rechargeable Cadmium Metal Batteries Enabled by an Aqueous CdSO4 Electrolyte. ACS nano 2025, 19, 12170–12181. doi:10.1021/acsnano.5c00124
- Shirwalkar, A.; Kaur, M.; Zhong, S.; Pupucevski, M.; Hu, K.; Yan, Y.; Lattimer, J.; McKone, J. Comparing Intrinsic Catalytic Activity and Practical Performance of Ni- and Pt-Based Alkaline Anion Exchange Membrane Water Electrolyzer Cathodes. ACS Energy Letters 2025. doi:10.1021/acsenergylett.5c00439
- Zhang, H.; Liu, D.-J.; Xu, K.; Meng, Y. S. Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries. Advanced materials (Deerfield Beach, Fla.) 2025, e2417757. doi:10.1002/adma.202417757
- Herring, C. J.; Montemore, M. M. Computational Discovery of Design Principles for Plasmon-Driven Bond Activation on Alloy Antenna Reactors. ACS nano 2025, 19, 9860–9867. doi:10.1021/acsnano.4c13602
- Zhang, Y.; Si, J.; Chen, Z.; Hu, S.; Qiu, F.; Li, W.; Zhang, W.; Miao, S. The Sb-Pt4 "Inverted Pyramid" in D023-Type Pt3Sb for Highly Efficient pH-Universal HER Catalysis. Nano letters 2025, 25, 4416–4423. doi:10.1021/acs.nanolett.4c06664
- Kıstı, M.; Hüner, B.; Albadwi, A.; Özdoğan, E.; Uzgören, İ. N.; Uysal, S.; Conağası, M.; Süzen, Y. O.; Demir, N.; Kaya, M. F. Recent Advances in Polymer Electrolyte Membrane Water Electrolyzer Stack Development Studies: A Review. ACS omega 2025, 10, 9824–9853. doi:10.1021/acsomega.4c10147
- Zhang, D.; Fan, X.; Feng, S.; Mai, Y.; Cai, N.; Xie, Y.; Li, Y.; Lin, H.; Su, R. Selective photo-conversion of benzaldehyde with ammonia tuned by metal nanoparticles. Cell Reports Physical Science 2025, 6, 102469. doi:10.1016/j.xcrp.2025.102469
- Hung, C.-C.; Liu, H.-Y.; Huang, Y.-M.; Lin, S.-C.; Yang, T.-H. Replacing Pd with Ag Nanocatalysts To Mitigate Hydrogen Embrittlement and Enhance Peel Strength in Industrial-Scale Electroless Cu Deposition on Surface-Modified Substrates. ACS Applied Nano Materials 2025, 8, 4240–4251. doi:10.1021/acsanm.5c00486
- Gisbert-González, J. M.; Rodellar, C. G.; Druce, J.; Ortega, E.; Cuenya, B. R.; Oener, S. Z. Bias Dependence of the Transition State of the Hydrogen Evolution Reaction. Journal of the American Chemical Society 2025, 147, 5472–5485. doi:10.1021/jacs.4c18638
- Centi, G.; Perathoner, S. Addressing the Complexity of Bridging Thermal and Reactive Catalysis. The Role of Strong Localised Electrical Fields. Topics in Catalysis 2025. doi:10.1007/s11244-025-02062-7
- Kapdos, Á.; Ujvári, M.; Kovács, N.; Szakály, Z.; Busai, Á.; Sólyom, P.; Grozovski, V.; Moreno-García, P.; Broekmann, P.; Vesztergom, S. Modelling the chronopotentiometric response of constant current hydrogen evolution from dilute solutions of strong acids. Journal of Catalysis 2025, 442, 115872. doi:10.1016/j.jcat.2024.115872
- Xie, J.; Wang, J.; Shu, Y.; Yang, J.; Li, Y.; Dong, H. Superior electro-catalytic performance achieved by the negatively charged boron atom on BC3/TM/graphene sandwich heterostructures. Journal of Materials Science & Technology 2025, 207, 255–265. doi:10.1016/j.jmst.2024.03.078
- Kuznetsov, V.; Podlovchenko, B.; Khanin, D.; Zhulikov, V.; Cherkasov, D. Preparation of Pd(Mo2C) composites by palladium deposition under open-circuit conditions, their corrosion resistance and catalytic activity. Journal of Electroanalytical Chemistry 2025, 979, 118913. doi:10.1016/j.jelechem.2024.118913
- Nuñez, J. L.; Colombo, E.; Tranca, I.; Bazin, D.; Quaino, P.; Tielens, F. Understanding the atomistic behavior of small molecules (O2 and N2) on monometallic M13 nanoparticles. Catalysis Today 2025, 445, 115051. doi:10.1016/j.cattod.2024.115051
- KC, B. R.; Kumar, D.; Bastakoti, B. P. Enhancing electrocatalytic performance of RuO2-based catalysts: mechanistic insights, strategic approaches, and recent advances. Journal of Physics: Energy 2025, 7, 22001. doi:10.1088/2515-7655/adad9f
- Fairhurst, A. R.; Snyder, J.; Wang, C.; Strmcnik, D.; Stamenkovic, V. R. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chemical reviews 2025, 125, 1332–1419. doi:10.1021/acs.chemrev.4c00133
Patents
- FELSER CLAUDIA; SUN YAN. METHOD FOR EVALUATING A CATALYST. EP 3798333 A1, March 31, 2021.