Cite the Following Article
Volcano plots in hydrogen electrocatalysis – uses and abuses
Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler
Beilstein J. Nanotechnol. 2014, 5, 846–854.
https://doi.org/10.3762/bjnano.5.96
How to Cite
Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Beilstein J. Nanotechnol. 2014, 5, 846–854. doi:10.3762/bjnano.5.96
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Tian, Y.; Li, T.; Pang, J.; Zhou, Y.; Xue, D.; Ding, X.; Lookman, T. Materials design with target-oriented Bayesian optimization. npj Computational Materials 2025, 11. doi:10.1038/s41524-025-01704-4
- Kang, J.; Lee, E.; Ham, H. C. Cobalt Single Atom Catalysts Supported on Different MXenes for the Alkaline Oxygen Evolution Reaction: First-Principles Approach. Korean Journal of Chemical Engineering 2025. doi:10.1007/s11814-025-00506-0
- Noh, Y. S.; Song, H.-t.; Moon, D. J. Combined Steam CO2 Reforming of Methane over Ni–Co Bimetallic Catalysts on Granule Type Calcium Aluminate. Catalysis Letters 2025, 155. doi:10.1007/s10562-025-05055-z
- Choi, K.; Omanovic, S. NixW1–x Nanoparticles as Electrocatalysts for Hydrogen Evolution in Acidic Medium. The Journal of Physical Chemistry C 2025, 129, 10833–10843. doi:10.1021/acs.jpcc.5c02508
- Janda, D. C.; Adak, A.; Sivakumar, B.; Amemiya, S. Volcano Plots and Voltammetric Simulation of Electrocatalytic Hydrogen Intermediates at Pt(111) for Scanning Electrochemical Microscopy. Journal of The Electrochemical Society 2025, 172, 66505. doi:10.1149/1945-7111/ade200
- Fan, Z.; Mucalo, M.; Kennedy, J.; Yang, F. The potential of high-entropy alloys as catalyst materials in water-splitting application. International Journal of Hydrogen Energy 2025, 134, 64–83. doi:10.1016/j.ijhydene.2025.04.477
- Gueskine, V.; Ding, P.; Crispin, R.; Vagin, M. Overcoming dichotomy between surface and bulk of electrode: Conducting polymers. Current Opinion in Electrochemistry 2025, 51, 101691. doi:10.1016/j.coelec.2025.101691
- Alkhaldi, R. S.; Abdulwahab, M. A.; Gondal, M. A.; Mohamed, M. J. S.; Almessiere, M. A.; Baykal, A.; Alsayoud, A. Ni Foam Supported Pd‐Doped Zinc Spinel Oxide Nano‐Electrocatalyst for Efficient Hydrogen Production Supported by DFT Study as Well Validated With Experimental Data. Advanced Sustainable Systems 2025, 9. doi:10.1002/adsu.202500142
- Baker, J.; Wang, D.; Alam, M. K.; Lao, K. U.; Arachchige, I. U. Dopant-Induced Hexagonal to Orthorhombic Phase Transition in Fe2-x Mo x P Nanorods and Its Influence on the Electrocatalytic Hydrogen Evolution Reaction. Chemistry of materials : a publication of the American Chemical Society 2025, 37, 3260–3273. doi:10.1021/acs.chemmater.4c03479
- Silva-Carrillo, C.; Reynoso-Soto, E. A.; Cruz-Reyes, I.; Salazar-Gastélum, M. I.; Trujillo-Navarrete, B.; Pérez-Sicairos, S.; Flores-Hernández, J. R.; Romero-Castañón, T.; Paraguay-Delgado, F.; Félix-Navarro, R. M. Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell. Nanomaterials (Basel, Switzerland) 2025, 15, 664. doi:10.3390/nano15090664
- Ryabicheva, M.; Zhigalenok, Y.; Abdimomyn, S.; Skakov, M.; Miniyazov, A.; Zhanbolatova, G.; Mukhamedova, N.; Ospanova, Z.; Djenizian, T.; Malchik, F. From lab to market: Economic viability of modern hydrogen evolution reaction catalysts. Fuel 2025, 395, 135227. doi:10.1016/j.fuel.2025.135227
- Zhao, K.; Xiang, N.; Wang, Y.-Q.; Ye, J.; Jin, Z.; Fu, L.; Chang, X.; Wang, D.; Xiao, H.; Xu, B. A molecular design strategy to enhance hydrogen evolution on platinum electrocatalysts. Nature Energy 2025, 10, 725–736. doi:10.1038/s41560-025-01754-4
- Jwa, E.; Kim, S.; Jeong, N.; Han, S.; Song, M. J.; Kang, S.; Nam, J.-Y. Enhanced hydrogen production in zero-gap bipolar membrane microbial electrolysis with binderless cathodes in real wastewater. Chemical Engineering Journal 2025, 509, 161416. doi:10.1016/j.cej.2025.161416
- Zhang, Y.; Shen, Y. Efficient electrosynthesis of valeric acid from levulinic acid using indium nanoparticles. Fuel 2025, 394, 135153. doi:10.1016/j.fuel.2025.135153
- Song, H.; Cui, Y.-F.; Zhao, N.; Li, W.; Huang, S.; Yang, H. Y. Rechargeable Cadmium Metal Batteries Enabled by an Aqueous CdSO4 Electrolyte. ACS nano 2025, 19, 12170–12181. doi:10.1021/acsnano.5c00124
- Shirwalkar, A.; Kaur, M.; Zhong, S.; Pupucevski, M.; Hu, K.; Yan, Y.; Lattimer, J.; McKone, J. Comparing Intrinsic Catalytic Activity and Practical Performance of Ni- and Pt-Based Alkaline Anion Exchange Membrane Water Electrolyzer Cathodes. ACS energy letters 2025, 10, 1779–1785. doi:10.1021/acsenergylett.5c00439
- Zhang, H.; Liu, D.-J.; Xu, K.; Meng, Y. S. Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries. Advanced materials (Deerfield Beach, Fla.) 2025, e2417757. doi:10.1002/adma.202417757
- Herring, C. J.; Montemore, M. M. Computational Discovery of Design Principles for Plasmon-Driven Bond Activation on Alloy Antenna Reactors. ACS nano 2025, 19, 9860–9867. doi:10.1021/acsnano.4c13602
- Zhang, Y.; Si, J.; Chen, Z.; Hu, S.; Qiu, F.; Li, W.; Zhang, W.; Miao, S. The Sb-Pt4 "Inverted Pyramid" in D023-Type Pt3Sb for Highly Efficient pH-Universal HER Catalysis. Nano letters 2025, 25, 4416–4423. doi:10.1021/acs.nanolett.4c06664
- Kıstı, M.; Hüner, B.; Albadwi, A.; Özdoğan, E.; Uzgören, İ. N.; Uysal, S.; Conağası, M.; Süzen, Y. O.; Demir, N.; Kaya, M. F. Recent Advances in Polymer Electrolyte Membrane Water Electrolyzer Stack Development Studies: A Review. ACS omega 2025, 10, 9824–9853. doi:10.1021/acsomega.4c10147
Patents
- FELSER CLAUDIA; SUN YAN. METHOD FOR EVALUATING A CATALYST. EP 3798333 A1, March 31, 2021.